Epileptic Disorders


Antiepileptogenesis, neuroprotection, and disease modification in the treatment of epilepsy: focus on levetiracetam Volume 5, supplement 1, Supplement, May 2003

1. White HS, Johnson M, Wolf HH, Kupferberg HJ. The early identification of anti-seizure activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital J Neurol Sci 1995; 16: 73-7.

2. Dalby NO, Nielsen EB. Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res 1997; 28: 63-72.

3. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia 1999; 40: 1471-83.

4. White HS. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia 1999; 40(Suppl 5): S2-10.

5. Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 2001; 15: 339-50.

6. Tatum WO 4th, French JA, Faught E, et al. Post-marketing antiepileptic drug survey. Postmarketing experience with topiramate and cognition. Epilepsia 2001; 42: 1134-40.

7. Ketter TA, Post RM, Theodore WH. Positive and negative psychiatric effects of antiepileptic drugs in patients with seizure disorders. Neurology 1999; 53(5 Suppl 2): S53-67.

8. Drane DL, Meador KJ. Epilepsy, anticonvulsant drugs and cognition. Baillieres Clin Neurol 1996; 5: 877-85.

9. Matagne A, Klitgaard H. Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res 1998; 31: 59-71.

10. Margineanu DG, Klitgaard H. Inhibition of neuronal hypersynchrony in vitro differentiates levetiracetam from classical antiepileptic drugs. Pharmacol Res 2000; 42: 281-5.

11. Temkin NR, Jarell AD, Anderson GD. Antiepileptogenic agents: how close are we? Drugs 2001; 61: 1045-55.

12. Cole AJ. Is epilepsy a progressive disease? The neurobiological consequences of epilepsy. Epilepsia 2000; 41(Suppl 2): S13-22.

13. Golarai G, Greenwood AC, Feeney DM, et al. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 2001; 21: 8523-37.

14. Romijn HJ, Voskuyl RA, Coenen AM. Hypoxic-ischemic encephalopathy sustained in early postnatal life may result in permanent epileptic activity and an altered cortical convulsive threshold in rat. Epilepsy Res 1994; 17: 31-42.

15. Yoshikawa T, Asano Y. Central nervous system complications in human herpesvirus-6 infection. Brain Dev 2000; 22: 307-14.

16. Garg RK. HIV infection and seizures. Postgrad Med J 1999; 75: 387-90.

17. Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 1999; 40(Suppl 1): S34-9; discussion S40-1.

18. Santhakumar V, Ratzliff AD, Jeng J, et al. Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 2001; 50: 708-17.

19. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 1969; 25: 295-330.

20. DeLorenzo RJ, Garnett LK, Towne AR, et al. Comparison of status epilepticus with prolonged seizure episodes lasting from 10 to 29 minutes. Epilepsia 1999; 40: 164-9.

21. Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 2000; 39: 133-52.

22. Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 1983; 9: 315-35.

23. Nadler JV. Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981; 29: 2031-42.

24. Nissinen J, Halonen T, Koivisto E, et al. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 2001; 38: 177-205.

25. Albright PS, Burnham WM. Development of a new pharmacological seizure model: effects of anticonvulsants on cortical- and amygdala-kindled seizures in the rat. Epilepsia 1980; 21: 681-9.

26. McNamara JO. Kindling: an animal model of complex partial epilepsy. Ann Neurol 1984; 16(Suppl): S72-6.

27. Löscher, W, Jäckel R, Czuczwar SJ. Is amygdala kindling in rats a model for drug-resistant partial epilepsy? Exp Neurol 1986; 93: 211-26.

28. Sramka M, Sedlak P, Nadvornik P. Observation of kindling phenomenon in treatment of pain by stimulation in thalamus. In: Sweet WH. Neurosurgical Treatment in Psychiatry, Pain, and Epilepsy. Baltimore: University Park Press, 1977: 651-654.

29. Cavazos JE, Sutula TP. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 1990; 527: 1-6.

30. Cavazos JE, Das I, Sutula TP. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci 1994; 14: 3106-21.

31. Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 1991; 11: 2795-803.

32. Sutula T, Lauersdorf S, Lynch M, et al. Deficits in radial arm maze performance in kindled rats: evidence for long-lasting memory dysfunction induced by repeated brief seizures. J Neurosci 1995; 15: 8295-301.

33. Gilbert TH, Hannesson DK, Corcoran ME. Hippocampal kindled seizures impair spatial cognition in the Morris water maze. Epilepsy Res 2000; 38: 115-25.

34. Hannesson DK, Howland J, Pollock M, et al. Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. J Neurosci 2001; 21: 4443-50.

35. Löscher W, Honack D, Rundfeldt C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 1998; 284: 474-9.

36. Morimoto K, Sato H, Yamamoto Y, et al. Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia 1997; 38: 966-74.

37. Schmutz M, Klebs K, Baltzer V. Inhibition or enhancement of kindling evolution by antiepileptics. J Neural Transm 1988; 72: 245-57.

38. Schmutz M, Brugger F, Gentsch C, et al. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia 1994; 35(Suppl 5): S47-50.

39. O’Donnell RA, Miller AA. The effect of lamotrigine upon development of cortical kindled seizures in the rat. Neuropharmacology 1991; 30: 253-8.

40. Postma T, Krupp E, Li XL, et al. Lamotrigine treatment during amygdala-kindled seizure development fails to inhibit seizures and diminishes subsequent anticonvulsant efficacy. Epilepsia 2000; 41: 1514-21.

41. Michalakis M, Holsinger D, Ikeda-Douglas C, et al. Development of spontaneous seizures over extended electrical kindling. I. Electrographic, behavioral, and transfer kindling correlates. Brain Res 1998; 793: 197-211.

42. Nedivi E, Hevroni D, Naot D. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 1993; 63: 718-22.

43. Sutula T, He XX, Cavazos J, et al. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988; 239: 1147-50.

44. Crumrine RC, Bergstrand K, Cooper AT, et al. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 1997; 28: 2230-6; discussion 2237.

45. Lee SR, Kim SP, Kim JE. Protective effect of topiramate against hippocampal neuronal damage after global ischemia in the gerbils. Neurosci Lett 2000; 281: 183-6.

46. Edmonds HL Jr, Jiang YD, Zhang PY, et al. Topiramate as a neuroprotectant in a rat model of global ischemia-induced neurodegeneration. Life Sci 2001; 69: 2265-77.

47. Traystman RJ, Klaus JA, DeVries AC, et al. Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes. Stroke 2001; 32: 783-7.

48. Rataud J, Debarnot F, Mary V, et al. Comparative study of voltage-sensitive sodium channel blockers in focal ischaemia and electric convulsions in rodents. Neurosci Lett 1994; 172: 19-23.

49. Marciani MG, Santone G, Sancesario G, et al. Protective effect of clonazepam on ischemic brain damage induced by 10-minute bilateral carotid occlusion in Mongolian gerbils. Funct Neurol 1993; 8: 115-20.

50. Chen Xu W, Yi Y, Qiu L, et al. Neuroprotective activity of tiagabine in a focal embolic model of cerebral ischemia. Brain Res 2000; 874: 75-7.

51. Shuaib A, Murabit MA, Kanthan R, et al. The neuroprotective effects of gamma-vinyl GABA in transient global ischemia: a morphological study with early and delayed evaluations. Neurosci Lett 1996; 204: 1-4.

52. Löscher W, Honack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 1993; 232: 147-58.

53. Klitgaard H, Matagne A, Gobert J, et al. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 1998; 353: 191-206.

54. Gower AJ, Hirsch E, Boehrer A, et al. Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res 1995; 22: 207-13.

55. Klitgaard HV, Matagne AC, Vanneste – Goemaere J, et al. Effects of prolonged administration of levetiracetam on pilocarpine-induced epileptogenesis in rat. Epilepsia 2001; 42 (Suppl 7): 114-5.

56. Gower AJ, Noyer M, Verloes R, et al. ucb L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur J Pharmacol 1992; 222: 193-203. (erratum Eur J Pharmacol 1993; 230: 389).

57. Lamberty Y, Margineanu DG, Klitgaard H. Absence of negative impact of levetiracetam on cognitive function and memory in normal and amygdala-kindled rats. Epilepsy Behav 2000; 1: 333-42.

58. Noyer M, Gillard M, Matagne A, et al. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol 1995; 286: 137-46.

59. Birnstiel S, Wülfert E, Beck SG. Levetiracetam (ucb LO59) affects in vitro models of epilepsy in CA3 pyramidal neurons without altering normal synaptic transmission. Naunyn Schmiedebergs Arch Pharmacol 1997; 356: 611-8.

60. Rigo JM, Hans G, Nguyen L, et al. The anti-epilectic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated current. Br J Pharmacol 2002; 136: 659-72.

61. Zona C, Niespodziany I, Marchetti C, et al. Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+currents. Seizure 2001; 10: 279-86.

62. Niespodziany I, Klitgaard H, Margineanu D-G. Levetiracetam: inhibits the high-voltage activated Ca2+ current in pyramidal neurons of rat hippocampal slices. Neurosci Lett 2001; 306: 5-8.

63. Bischoff U, Schlobohm I. Levetiracetam had no effect on voltage-gated potassium currents in cultured mouse hippocampal neurons. Epilepsia 2002; 43(Suppl 8): 88.

64. Klitgaard H, Matagne A, Grimee R, Vanneste-Goemaere J, Margineanu DG. Electrophysiological, neurochemical and regional effects of levetiracetam in the rat pilocarpine model of temporal epilepsy. Seizure 2003;12: 92-100.

65. White HS, Brown SD, Woodhead JH, et al. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 1997; 28: 167-79.

66. Ng GY, Bertrand S, Sullivan R, et al. Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol 2001; 59: 144-52.

67. Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 1992; 13: 107-12.

68. Amano K, Hamada K, Yagi K, et al. Antiepileptic effects of topiramate on amygdaloid kindling in rats. Epilepsy Res 1998; 31: 123-8.

69. Niebauer M, Gruenthal M. Topiramate reduces neuronal injury after experimental status epilepticus. Brain Res 1999; 837: 263-9.

70. Stratton SC, Large CH, Cox B, et al. Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model. Epilepsy Res 2003; 53: 95-106.

71. Hanon, E, Klitgaard H. Neuroprotective properties of the novel antiepileptic drug levetiracetam in the rat middle cerebral artery occlusion model of focal cerebral ischemia. Seizure 2001; 10: 287-93.

72. Jehle T, Lagreze WA, Blauth E, et al. Gabapentin-lactam (8-aza-spiro [5,4] decan-9-on; GBP-L) inhibits oxygen glucose deprivation-induced [3H] glutamate release and is a neuroprotective agent in a model of acute retinal ischemia. Naunyn Schmiedebergs Arch Pharmacol 2000; 362: 74-81.

73. Shuaib A, Mahmood RH, Wishart T, et al. Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res 1995; 702: 199-206.

74. Wiard RP, Dickerson MC, Beek O, et al. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Stroke 1995; 26: 466-72.

75. Smith SE, Meldrum BS. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke 1995; 26: 117-21.

76. Halonen T, Nissinen J, Pitkanen A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res 2001; 46: 205-23.