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ABSTRACT − The search for antiepileptic drugs (AEDs) using drug screens that
test for the ability to suppress paroxysmal events has primarily resulted in the
discovery of AEDs that inhibit neuronal excitability. While profoundly reducing
expression of epileptic seizures, current pharmacologic treatments have not
been able to completely control seizures in all patients, and can impair normal
neuronal excitation underlying cognition. A new approach to drug screening,
including the process of epileptogenesis, may yield new classes of drugs that not
only suppress seizures but also specifically act to protect against the neurobio-
logical changes that contribute to the development of epilepsy. By preventing or
reversing the neuronal circuit reorganizations that produce lowered seizure
thresholds following brain insults such as head trauma or status epilepticus,
these antiepileptogenic drugs could prevent, or reverse, progressive worsening
of the epileptic process. It is likely that antiepileptogenic drugs will have
mechanisms of action distinct from traditional AEDs, as the molecular mecha-
nisms underlying epileptogenesis and ictogenesis probably differ. One new
AED with potential antiepileptogenic properties is levetiracetam, which was
discovered using non-conventional drug screens. It markedly suppresses kin-
dling development at doses devoid of adverse effects, with persistent suppres-
sion of kindled seizures even after termination of treatment. Further design and
implementation of antiepileptogenic drug screens are needed for the discovery
of other novel disease-modifying agents.
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Introduction

The discovery of new drugs with spe-
cific properties requires appropriate
tests of drug function. Traditional
screens for antiepileptic drugs (AEDs)
examine anti-seizure properties; i.e,
the ability to suppress expression of
experimentally induced seizures in

normal laboratory animals [1, 2]. For
this reason, current drug treatment op-
tions for epilepsy predominantly com-
bat ictogenesis, or the initiation of
paroxysmal activity [3]. This has iden-
tified a number of classes of AEDs that
primarily suppress neuronal excitabil-
ity by blocking Na+ channels or en-
hancing inhibitory GABAergic activity
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[4, 5]. While these traditional AEDs have had a profound
effect by reducing the expression of epileptic seizures,
their function invariably elicits some impairment of the
normal neuronal excitability underlying cognitive func-
tion [6-8]. Since ictogenesis and cognition are both medi-
ated by neuronal excitability, it may not be possible to
discover optimal non-impairing AEDs using traditional
screens. This may be improved by performing drug
screens in animal models of chronic epilepsy. Thus, by
applying genetically modified or kindled animals [9] it
may be possible to discover new AEDs that inhibit the
neuronal hypersynchronization leading to an ictal event,
without interfering with normal neuronal excitability [10].
An additional approach to the discovery of novel AEDs
would be to examine processes of epileptogenesis in
addition to ictogenesis [11]. Since the development of
epilepsy is a multistep progressive process [12], there may
be several mechanisms in addition to the neuronal excit-
ability and hypersynchronization associated with the par-
oxysmal event that are susceptible to pharmacologic inter-
vention. Thus, it appears possible to devise novel drug
screens that may reveal new classes of AEDs with less
compromising mechanisms of action.

Epileptogenesis refers to the multiphase process in which a
normal brain undergoes alterations to support the genera-
tion of spontaneous seizures. It may be initiated by brain
damage produced by events such as head trauma [13],
stroke [14], infection [15, 16], or status epilepticus [17].
Following such an initial insult, a latency phase without
seizures follows and may last for weeks to years. During
these initial stages, progressive brain alterations result in
lowered seizure thresholds which eventually cause spon-
taneous seizures [13, 18]. Once seizures occur, the epi-
leptic disease state probably continues to progress, with
each seizure having the potential to induce additional
neuronal alterations that may further lower seizure thresh-
olds [19].

In order to discover novel AEDs that combat these phases
of epileptogenesis, new drug screening models must be
employed. It is likely that such screens would identify
drugs with mechanisms of action different from traditional
AEDs, since the molecular mechanisms underlying epi-
leptogenesis and ictogenesis are different. While anticon-
vulsants reduce the duration or frequency of seizures by
suppressing neuronal excitation or excitability, real anti-
epileptogenic agents would act by blocking the initial
epileptogenic process or by altering the epileptic disease
state after the seizure onset [11]. Appropriate screens for
antiepileptogenic drug action would be tests for the ability
of drugs to reduce alterations in molecular, cellular, and
network properties that occur during the epileptogenic
process.

The induction of status epilepticus (SE) and kindling rep-
resent two animal paradigms in the preclinical evaluation
of AEDs. SE is defined as long-duration seizures, typically

lasting for more than 30 min [20]. Experimentally, SE can
be induced by acute systemic exposure to epileptogenic
agents, including drugs that block GABAergic inhibition
or facilitate glutamatergic or cholinergic excitatory trans-
mission. The glutamate receptor agonist kainic acid [21]
and the cholinergic agonist pilocarpine [22] are com-
monly used in SE models. SE can also be induced by
electrical stimulation [1]. Anti-seizure properties of poten-
tial AEDs can be tested by measuring the ability of drugs to
suppress SE initiation, duration, or seizure intensity fol-
lowing administration of convulsant agents.
Experimentally induced SE can also be used as a model for
epileptogenesis, since SE induces neuronal alterations
similar to those seen in epileptic patients. Further, the
long-duration seizures characteristic of SE produce neu-
ronal damage similar to Ammon’s horn sclerosis observed
in patients with temporal lobe epilepsy [23, 24]. SE in-
duces cell loss in specific neuronal populations in mul-
tiple brain regions, including the hippocampus,
amygdala, and entorhinal cortex [22, 23]. The damage
induced by kainic acid-induced SE is produced by the
evoked seizure activity and not by direct activation of
glutamate receptors by kainic acid [23]. There are two
phases of cell death following SE. Acute necrotic cell loss
occurs during the prolonged seizure event, while other
cells undergo delayed cell death hours or days following
seizure termination. Surviving brain cells undergo mor-
phological alterations including axonal sprouting and al-
tered density of dendritic spines. In addition, SE causes
widespread changes in gene expression, the extracellular
matrix, and neurogenesis. SE also causes alteration in
non-neuronal brain cells, such as changes in number and
morphology of astrocytes and microglia. Functionally, SE
produces long-lasting deficits in cognition, behavior, and
memory. Critical to the use of SE as a model of epilepto-
genesis is that spontaneous seizures develop after a la-
tency following SE. SE can be used to test for antiepilep-
togenic properties of potential AEDs by administering the
AED following SE and examining the effect on neuronal
pathology and expression of spontaneous seizures.
A second animal model commonly used for evaluating
anti-seizure properties of AEDs is focal, electrical kindling.
In the kindling model, repeated exposure to an initial
sub-convulsive stimulus eventually evokes seizures [19,
25, 26]. Initially, electrical kindling stimuli only elicit
short-duration afterdischarges produced by a synchronous
neuronal discharge near the site of stimulation. Each addi-
tional kindling stimulation induces longer afterdischarges
which incorporate larger brain regions, with the limbic
system quickly becoming involved. Behavioral seizures
accompany the afterdischarges and become more com-
plex and longer with repeated stimuli. This progressive
increasing sensitivity to a previously subconvulsant
stimuli usually takes a number of days or weeks and
eventually reaches a plateau in which kindling stimuli
evoke seizures and afterdischarges with reproducible be-
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haviors and durations. The kindling-induced reduction in
seizure threshold is permanent. The seizures evoked by
focal, electrical kindling stimuli in the temporal lobe in-
volve limbic circuits and are analogous to human complex
partial seizures with secondary generalization [26, 27].
Pharmacologic convulsants or electrical stimuli can in-
duce kindling [26]. Kindling can be used as a screen for
anti-seizure effects since kindled seizures are inducible
and have durations and electrographic and behavioral
manifestations that are easily characterized. After animals
have been fully kindled, potential AEDs can be adminis-
tered and the effects on behavioral and electrographic
seizures measured.

The progressive nature of kindling, in which repeated
seizures cause a reduction in seizure thresholds over time,
may share features with the epileptogenic process in hu-
mans. It is possible that the long delay between trauma
and seizure expression in posttraumatic epilepsy may
reflect a slow kindling process [26]. This idea is supported
by the development of generalized seizures in a patient
receiving electrical stimulation of the thalamus [28]. Evi-
dence against kindling as a mechanism underlying epi-
lepsy in man relates to the observation that although
primates can be kindled, they are much more resistant to
kindling stimuli than are rodents [26].

An association between alterations of neuronal circuits
and increased seizure susceptibility has also been found in
kindling. Even relatively brief kindled seizures, lasting
seconds to minutes, have been shown to produce limited
neuronal alterations similar to those seen following SE.
Kindled seizures induce progressive, but limited, cell loss
in limbic regions including the dentate gyrus, hippocam-
pus and entorhinal cortex [29, 30], and sprouting of ax-
onal collaterals in the dentate gyrus [31]. Kindling also
induces behavioral alterations and causes long-term defi-
cits in cognitive function [32-34]. In contrast to SE, how-
ever, kindling rarely results in the development of sponta-
neous seizures.

Therefore, kindling stands as a model to investigate the
effects of potential antiepileptogenic compounds on the
reorganization of neuronal circuits which have similarities
to those that occur after SE and lead to the development of
spontaneous seizures [11, 35]. Drugs with antiepilepto-
genic properties may inhibit the development of kindling.
Some antiepileptogenic drugs might function to block
spread of the synchronous neuronal discharge underlying
seizure activity or prevent the formation of secondary foci.
This model is confounded by the fact that during kindling
development, it is the kindled seizures that induce the
neuronal alterations underlying lowered afterdischarge
thresholds. Therefore, drugs with anti-seizure effects might
inhibit kindling development simply by preventing, or
shortening, the expression of seizures, not by inhibiting
the effects of seizures. In this sense, anti-seizure com-
pounds might have disease-modifying effects by shorten-

ing seizure duration. However, this problem may be
solved by continued evaluation of kindling inhibition after
cessation of treatment with an AED. It has consistently
been reported that AEDs which enhance GABAergic trans-
mission delay development of kindling [36]. In contrast,
most AEDs that block Na+ channels do not delay the
development of kindling [37-40].
The main problem with kindling as a model of epilepto-
genesis is that kindled seizures must be induced. Since the
emergence of spontaneous seizures following kindling is
rare, it may be questioned if kindling produces a true
epileptic state [41]. It is possible that the neuronal alter-
ations produced by kindling, including cell loss and aber-
rant axonal sprouting, are relatively mild and may not be
sufficient to mediate epileptogenesis [29-31]. Further-
more, it may be argued that the neuronal damage in the
kindling model is the result of, and not the cause of,
seizures.

Animal models for testing neuroprotective
effects of AEDs

A wide range of brain insults, including SE, head trauma,
and stroke, produce a pattern of brain damage. Different
initial events may induce a similar sequence of events,
including acute neuronal necrosis, followed by delayed
glutamate release and excitotoxicity, which commonly
results in the death of specific neuronal populations. Long-
term alterations, evoked by activity-induced gene expres-
sion [42] or compensatory responses to cell damage and
death, appears to produce changes in neuronal circuits
[17]. It is likely that at least a subset of these alterations
underlie the reduced seizure thresholds and expression of
spontaneous seizures that define the epileptogenic disease
state. For example, altered neuronal circuitry from axonal
sprouting and aberrant excitatory synapse formation may
produce hyperexcitable recurrent circuits [43]. Altered
glial cell function observed following SE may disrupt
extracellular K+ buffering contributing to neuronal hyper-
excitability. The multistep process of epileptogenesis pro-
vides a number of sites for potential pharmacologic inter-
vention. Drug screens may be designed to specifically
target the discovery of agents that inhibit the initial dam-
age produced by brain insults. Alternatively, antiepilepto-
genic drug screens may seek compounds that block exci-
totoxic cell death or other secondary damage. Other
agents may prevent or reverse the compensatory alter-
ations in neuronal circuits that contribute to lowered
seizure thresholds.

Ischemia models

Screens for antiepileptogenic drugs may identify com-
pounds that protect against altered neuronal circuits and
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neuronal damage. SE models can be used to test drugs for
effects against SE-induced neuronal death, morphological
alterations, altered excitability, and seizure expression.
Temporary global ischemia in rodents produced by arterial
occlusion or cardiac arrest is used as a model of stroke.
Neuronal pathology following global ischemia has many
similarities to damage following SE [44-47]. Both can lead
to expression of spontaneous seizures [14]. The ability of
drugs to block the ischemia-induced neuronal damage or
the emergence of neurological deficits and seizures in SE
models can be considered as a screen for antiepileptoge-
nic drug properties. In that respect, tests of traditional
AEDs in ischemia models has found that Na+ channel
blockers (carbamazepine, phenytoin, lamotrigine) [48]
and GABAergic transmission enhancers (clonazepam, ti-
agabine, topiramate, vigabatrin) [46, 49-51] reduce is-
chemic damage.
In addition to attenuating the initial alterations in neuronal
circuits and brain damage preceding the first spontaneous
seizures, antiepileptogenic drugs also might function after
the epileptic state has been established to change the
underlying disease state. Antiepileptogenic agents may
alter neuronal circuits, making them less seizure-prone,
and neuroprotective agents may reduce further seizure-
induced damage. It remains to be determined to what
extent these two approaches may alleviate the conse-
quences of the epileptogenic process in man.

Preclinical findings with levetiracetam (LEV)

The novel AED LEV has interesting properties that may
suggest both anti-seizure and antiepileptogenic proper-
ties. LEV differs from most AEDs in that it has no anti-
seizure effect in the acute maximal chemoconvulsive or
electroshock seizure tests [52, 53], but it markedly sup-
presses seizures in kindled and genetically epileptic ani-
mals [52-54]. The ability of LEV to delay the development
of kindling [35] suggests that it has the potential to inter-
fere with circuitry modifications underlying the progres-
sive development of lowered seizure threshold. Of par-
ticular interest is the finding that, unlike any other
currently available AED, LEV treatment results in a persis-
tent suppression of afterdischarge duration in kindled
brain, even after the termination of treatment. Further
support for an antiepileptogenic potential of LEV derives
from recent observations showing that LEV attenuates both
hippocampal cell death and enhancement in hippocam-
pal excitability following a pilocarpine-induced SE [55].

Safety of LEV in animal models

One of the promising features of LEV is a highly favorable
safety profile in animal models. LEV elicits only mild
sedation at doses more than 50 to 100 times higher than

the anti-seizure dose [53]. LEV demonstrates low toxicity
in rats and mice in an Irwin-type observation test, the
rotarod test, and open-field exploration [52, 53, 56]. Thus,
LEV induces only mild behavioral alterations in normal
and amygdala kindled rats at anti-seizure doses [52, 53].
In corneally kindled mice, LEV had a high safety margin
between rotarod impairment and seizure suppression
[53]. Furthermore, at doses which produced seizure sup-
pression, LEV did not alter cognitive performance of nor-
mal and amygdala kindled rats in the Morris water maze
test [57]. Furthermore, at clinically relevant doses, LEV
also did not affect induction of long-term potentiation in
rat hippocampal slices, a model of memory [57].

LEV mechanisms of action

Although LEV’s mechanism of action is still not fully
elucidated, it appears to differ from that of other known
AEDs. LEV has a specific membrane binding site within
the brain [58], but it does not directly affect glutamate – or
GABA – receptor mediated synaptic transmission at thera-
peutically relevant concentrations [59, 60]. Furthermore,
LEV does not alter Na+ channel current properties [61].
LEV produces a limited reduction in high-voltage-
activated Ca2+ currents [62] but not low-voltage-activated
calcium currents [61]. Although LEV has little direct effect
on GABA-receptor mediated currents, it opposes the ac-
tion of negative modulators of GABA and glycine recep-
tors [60]. Conflicting reports exist as to LEV’s ability to
induce a modest inhibition of the delayed rectifier K+

current [63] LEV’s antiepileptic action appears mediated
through selective inhibition of neuronal burst firing and
blocking synchronized firing of populations of neurons
[10, 64]. Indeed, the ability of LEV to selectively suppress
synchronized and burst firing interferes with spike propa-
gation from the hippocampus to cortex [64] and may
underlie both its unique anti-seizure and antiepileptoge-
nic effects.

Comparison of LEV to other AEDs

LEV’s mechanism of action appears to be distinct from the
other new AEDs (table 1), including topiramate, gabapen-
tin, lamotrigine, and oxcarbazepine, which appear to
directly affect neuronal excitability. Topiramate is princi-
pally a Na+ channel blocker that may also enhance
GABAA-receptor currents [65]. The mechanism of action
of gabapentin is unclear but relates to reduction in L-type
Ca2+ currents and increases in GABA levels [66]. Lamot-
rigine is also principally a Na+ channel blocker [67].
Oxcarbazepine is a Na+ channel blocker that also in-
creases K+ conductance and modulates high-voltage acti-
vated Ca2+ channels [38].
Some of these AEDs may possess antiepileptogenic prop-
erties. For example, topiramate suppresses kindling devel-
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opment [68]. It acts primarily by blocking the spread of
seizures. When administered after SE, topiramate attenu-
ates seizure-induced hippocampal cell death [69]. Oxcar-
bazepine, however, prolongs afterdischarge duration dur-
ing kindling induction and increases the rate of kindling
development [37]. Lamotrigine has been reported to in-
crease, decrease [70], or have no effect on kindling devel-
opment [39, 40]. It is interesting that the AEDs that are Na+

channel blockers have primarily anti-seizure properties,
while AEDs that modulate GABAergic transmission also
appear to possess antiepileptogenic properties. Indeed,
most AEDs that enhance GABAergic transmission have
neuroprotective effects against SE-induced neuronal dam-
age.

LEV pretreatment significantly reduced the infarct volume
induced by transient cerebral artery occlusion [71]. Topi-
ramate post-treatment has also been reported to protect
against global ischemia-induced hippocampal cell death
and motor impairment [45, 46] and to reduce the severity
of seizures induced by ischemic insults [46]. Topiramate
post-treatment also reduced the hippocampal damage
when administered 140 min after the onset of SE induced
by unilateral hippocampal stimulation [69].

Gabapentin has been shown to reduce glutamate release
in hippocampal models of ischemia but not in vivo [72].
Lamotrigine post-treatment has been shown to be neuro-
protective both in focal and global ischemia models in rats
and gerbils [44, 48, 73-75]. Furthermore, lamotrigine ad-
ministration before or after electrical stimulation-induced

SE protected against cell death in the hippocampus and
piriform cortex, but did not alter subsequent memory
impairments [76].

Conclusions

Traditional epilepsy treatment has focused on seizure sup-
pression using anti-seizure drugs. With the understanding
that epilepsy arises as a progressive change in neural
circuits and frequently manifests as neuronal damage, it
may be more appropriate to complement this treatment
with antiepileptogenic and neuroprotective drugs. The
molecular basis of epileptogenesis and ictogenesis have a
very different neurobiologic basis and may therefore be
addressed by different classes of drugs or drug actions.
Thus, novel antiepileptogenic compounds may be found
by using screens specifically designed to test for neuropro-
tection or the ability to alter the reorganization of neuronal
circuits underlying the development of lowered seizure
threshold. Such new drugs would be important as prophy-
lactic antiepileptogenic drugs following head trauma,
stroke, cerebral infection, and SE to prevent the potential
development of spontaneous seizures. Importantly, con-
tinual antiepileptogenic and neuroprotective drug admin-
istration may be required, since molecular, cellular, and
network reorganization continues after the diagnosis of
epilepsy, particularly in patients who are not seizure-free.
Reducing the ongoing circuitry reorganization in this
difficult-to-treat subpopulation of patients may result in

Table 1. Mechanism of action and properties of levetiracetam (LEV) and other antiepileptic drugs (AEDs)

AED Mechanism of action Effects on kindling

LEV Specifically reduces the N-type high-voltage-activated
Ca2+ current
Opposes the action of negative modulators of GABA
and glycine receptors

Increases afterdischarge threshold
Decreases seizure severity
Reduces seizure spread
Increases threshold for secondary generalized seizures
Suppresses kindling development

Topiramate Na+ channel blocker,
Enhances GABAA receptor currents
Inhibits kainate and AMPA receptors
Reduces the high voltage-activated Ca2+ current
Inhibits type II and IV carbonic anhydrase

Suppresses kindling development
Increases afterdischarge threshold
Decreases seizure severity and duration
Reduces seizure spread

Gabapentin Increases GABA levels
Reduces L-type Ca2+ currents

Increases afterdischarge threshold
Decreases seizure severity
Reduces seizure spread
Increases threshold for secondary generalized seizures

Lamotrigine Na+ channel blocker
Reduces Ca2+ conductances involved in transmitter
release

Suppresses completed kindled seizures
Blocks, has no effect, or facilitates kindling
development
Increases afterdischarge threshold
Has no effect or decreases seizure severity and
duration

Oxcarbazepine Na+ channel blocker
Increases K+ conductance
Modulation of high voltage-activated Ca2+ channels
Reduces Ca2+ conductances involved in transmitter
release

Does not block (may facilitate) kindling development
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less severe epilepsy expression. Neuroprotection may
constitute a critical component of epileptogenesis allevia-
tion, of neuronal loss after brain-damaging insults, and
alleviation of the continuous remodeling of neuronal cir-
cuits in established epilepsies.
The novel AED LEV may be the first of a new class of drugs
which meet these needs. Whether the permanent shorten-
ing of afterdischarge duration by LEV treatment during
kindling development is associated with antiepileptogen-
esis in models in which the spontaneous seizure develop-
ment is triggered by brain damage remains an intriguing
hypothesis [35]. Furthermore, whether this reflects a sig-
nificant disease-modifying effect (i.e., seizures will be
shorter) remains to be confirmed in spontaneous seizure
models. LEV also supports the notion that drugs which do
not act directly to suppress neuronal excitability may have
more favorable safety profiles. It is likely that the applica-
tion of drug screens specifically testing for antiepileptoge-
nesis may yield additional promising AEDs.
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