John Libbey Eurotext

European Cytokine Network


Activation of two distinct anti-proliferative pathways, apoptosis and p38 MAP kinase-dependent cell cycle arrest, by tumor necrosis factor in human melanoma cell line A375 Volume 12, issue 2, June 2001


See all figures

Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya 467-8603, Japan.

The proliferation of human melanoma cell line A375-6 cells is inhibited by several cytokines, including interleukin-1 (IL-1). A375-R8 cells, a subclone of A375-6, are resistant to IL-1-induced growth inhibition. The proliferation of both cell lines is inhibitable by tumor necrosis factor (TNF). In this study, we characterized the mechanisms of TNF-induced growth inhibition. TNF-induced growth inhibition in both cell lines was partially suppressed by a selective p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), whereas a combination of SB203580 and Z-VAD-fmk, an inhibitor for a wide range of caspases, completely blocked TNF-induced growth inhibition, indicating that TNF-induced growth inhibition is mediated by both p38 MAPK and caspases. However, Z-VAD-fmk alone suppressed TNF-induced growth inhibition in A375-R8, but not A375-6, cells, suggesting that there may exist a TNF-induced anti-apoptotic mechanism in A375-6 cells which is lost or mutated in A375-R8 cells. Evidence in support of this notion includes (1) TNF-induced apoptosis only in A375-R8, but not A375-6 cells; (2) cycloheximide enabled TNF to induce apoptosis even in A375-6 cells; and (3) somatic hybrid cells between A375-6 and A375-R8 cells are resistant to TNF-induced apoptosis. Since TNF-induced NF-kB activation, cell cycle arrest, RB dephosphorylation, and E2F downregulation are indistinguishable in both cell lines, none of these factors is likely to be involved in the TNF-induced anti-apoptotic mechanism in A375-6 cells. Our results indicate that TNF activates two distinct anti-proliferative pathways including p38 MAPK-dependent cell cycle arrest and caspase-mediated apoptosis, as well as an anti-apoptotic mechanism in melanoma cells.