JLE

Sang Thrombose Vaisseaux

MENU

The gut microbiota and cardiovascular diseases Volume 30, issue 1, January-February 2018

  • [1] Qin J., Li R., Raes J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.
  • [2] Lim G.B. Risk factors: intestinal microbiota: ‘a new direction in cardiovascular research’. Nat Rev Cardiol. 2013;10:363.
  • [3] Kiechl S., Lorenz E., Reindl M. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002;347:185-192.
  • [4] Karlsson F.H., Fåk F., Nookaew I. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245.
  • [5] Mitra S., Drautz-Moses D.I., Alhede M. analyses of metagenomes from human atherosclerotic plaque samples. Microbiome. 2015;3:38. In silico
  • [6] Gan X.T., Ettinger G., Huang C.X. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7:491-499.
  • [7] Gregory J.C., Buffa J.A., Org E. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-5660.
  • [8] Kootte R.S., Levin E., Salojarvi J. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611-619.
  • [9] Tang W.H., Wang Z., Levison B.S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575-1584.
  • [10] Schiattarella G.G., Sannino A., Toscano E. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38:2948-2956.
  • [11] Hanniman E.A., Lambert G., McCarthy T.C. Loss of functional Farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res. 2005;46:2595-2604.
  • [12] Pols T.W., Nomura M., Harach T. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747-757.
  • [13] Duboc H., Aelion H., Rainteau D. Crosstalk between the hepatologist and the cardiologist: a future place for the lithocholic acid as a coronary atheroma risk factor? Hepatology. 2012;56:2426.
  • [14] Jie Z., Xia H., Zhong S.L. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845.
  • [15] Burcelin R. Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda). 2012;27:300-307.
  • [16] Ridaura V.K., Faith J.J., Rey F.E. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.
  • [17] Karlsson F.H., Tremaroli V., Nookaew I. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99-103.
  • [18] Creely S.J., McTernan P.G., Kusminski C.M. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740-E747.
  • [19] Prawitt J., Caron S., Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11:160-166.
  • [20] Marques F.Z., Mackay C.R., Kaye D.M. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2017;10:1038.
  • [21] Watanabe M., Houten S.M., Mataki C. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484-489.
  • [22] Luedde M., Winkler T., Heinsen F.A. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017;4:282-290.
  • [23] Cotillard A., Kennedy S.P., Kong L.C. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585-588.
  • [24] Tang W.H., Kitai T., Hazen S.L. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183-1196.