JLE

Médecine de la Reproduction

MENU

Microfluidics for reproductive medicine Volume 24, issue 1, Janvier-Février-Mars 2022

  • [1.] Whitesides G M. The origins and the future of microfluidics. Nature 2006 ; 442 : 368-73.
  • [2.] Bhatia S N, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014 ; 32 : 760-72.
  • [3.] Picollet-D’hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip : A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotech 2021 ; 32 : 788-810.
  • [4.] Virumbrales-Munoz M, Ayuso J M, Gong M M, Humayun M, Livingston M K, Lugo-Cintron K M, et al. Microfluidic lumenbased systems for advancing tubular organ modeling. Chem Soc Rev 2020; 49 : 6402-42.
  • [5.] Moraes C, Mehta G, Lesher-Perez S C, Takayama S. Organson-a-chip : a focus on compartmentalized microdevices. Ann Biomed Eng 2012 ; 40 : 1211-27.
  • [6.] Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends Biotech 2010 ; 28 : 55-62.
  • [7.] Hubrecht R C, Carter E. The 3Rs and Humane Experimental Technique : Implementing Change. Animals-Basel 2019 ; 9.
  • [8.] Kashaninejad N, Shiddiky M J A, Nguyen N T. Advances in Microfluidics-Based Assisted Reproductive Technology : From Sperm Sorter to Reproductive System-on-a-Chip. Adv Biosyst 2018; 2.
  • [9.] Le Gac S, Nordhoff V. Microfluidics for mammalian embryo culture and selection : where do we stand now? Mol Hum Reprod 2017 ; 23 : 213-26.
  • [10.] Le Gac S, Nordhoff V, Venzac B. Microfluidic devices for gamete processing and analysis, fertilization and embryo culture and characterization in : Tokeshi M (Ed.) Medical and Biological Applications of Microfluidic Devices, Singapore, Springer 2019.
  • [11.] Knowlton S M, Sadasivam M, Tasoglu S, Microfluidics for sperm research. Trends Biotech 2015 ; 33: 221-9.
  • [12.] Nosrati R, Graham P J, Zhang B, Riordon J, Lagunov A, Hannam T G et al. Microfluidics for sperm analysis and selection. Nat Rev Uro 2017 ; 14 : 707-30.
  • [13.] Wu J K, Chen P C, Lin Y N, Wang C W, Pan L C, Tseng F G. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 2017 ; 142 : 938-44.
  • [14.] Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem 2010 ; 56 : 1270-8.
  • [15.] Segerink L I, Sprenkels A J, ter Braak P M, Vermes I, van den Berg A. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip 2010 ; 10 : 1018-24.
  • [16.] Bennabi I, Crozet F, Nikalayevich E, Chaigne A, Letort G, Manil-Segalen M, et al. Artificially decreasing cortical tension generates aneuploidy in mouse oocytes. Nat Comm 2020 ; 11 : 1649.
  • [17.] Yanez L Z, Camarillo D B. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod 2017 ; 23 : 235-47.
  • [18.] Zeggari R, Wacogne B, Pieralli C, Roux C, Gharbi T. A full micro-fluidic system for single oocyte manipulation including an optical sensor for cell maturity estimation and fertilisation indication. Sens Act B-Chem 2007 ; 125 : 664-71.
  • [19.] Wacogne B, Pieralli C, Roux C, Gharbi T. Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool. Biomed Microdevices 2008 ; 10 : 411-9.
  • [20.] Luo Z, Guven S, Gozen I, Chen P, Tasoglu S, Anchan R M, et al. Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluid 2015 ; 19 : 883-90.
  • [21.] Vidberg F, Zeggari R, Pieralli C, Amiot C, Roux C, Wacogne B. Measurement of oocyte temporal maturation process by means of a simple optical micro-system. Sens Act B-Chem 2011 ; 157 : 19-25.
  • [22.] Choi W, Kim J S, Lee D H, Lee K K, Koo D B, Park J K. Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed Microdevices 2008 ; 10 : 337-45.
  • [23.] Swain J E, Lai D, Takayama S, Smith G D. Thinking big by thinking small : application of microfluidic technology to improve ART. Lab Chip 2013 ; 13 : 1213-24.
  • [24.] Esteves T C, van Rossem F, Nordhoff V, Schlatt S, Boiani M, Le Gac S. A microfluidic system supports single mouse embryo culture leading to full-term development. RSC Adv 2013 ; 3 : 26451-8.
  • [25.] Kieslinger D C, Hao Z X, Vergouw C G, Kostelijk E H, Lambalk C B, S. Le Gac S. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device : a randomized controlled trial. Fertil Steril 2015 ; 10: 680-U393.
  • [26.] Melin J, Lee A, Foygel K, Leong D E, Quake S R, Yao M W M. In Vitro Embryo Culture in Defined, Sub-microliter Volumes. Dev Dynam 2009 : 238 : 950-5.
  • [27.] Raty S, Walters E M, Davis J, Zeringue H, Beebe D J, Rodriguez-Zas S L, et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 2004 ; 4 : 186-90.
  • [28.] Kim M S, Bae C Y, Wee G, Han Y M, Park J K. A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis 2009 ; 30 : 3276-82.
  • [29.] Huang H Y, Shen H H, Tien C H, Li C J, Fan S K, Liu C H, et al. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip. PloS one 2015 ; 10 : e0124196.
  • [30.] Heo Y S, Cabrera L M, Bormann C L, Shah C T, Takayama S, Smith G D. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 2010 ; 25 : 613-22.
  • [31.] Wu C C, Saito T, Yasukawa T, Shiku H, Abe H, Hoshi H, et al. Microfluidic chip integrated with amperometric detector array for in situ estimating oxygen consumption characteristics of single bovine embryos. Sens Act B-Chem 2007 ; 125 : 680-7.
  • [32.] Heo Y S, Cabrera L M, Bormann C L, Smith G D, Takayama S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip 2012 ; 12 : 2240-6.
  • [33.] Ma R, Xie L, Han C, Su K, Qiu T, Wang L, et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem 2011 ; 83 : 2964-70.
  • [34.] Han C, Zhang Q F, Ma R, Xie L, Qiu T A, Wang L, et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip 2010 ; 10 : 2848-54.
  • [35.] Ramos-Ibeas P, Heras S, Gomez-Redondo I, Planells B, Fernandez-Gonzalez R, Pericuesta E, et al. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019 ; 86 :1292-306.
  • [36.] Mancini V, Pensabene V. Organs-On-Chip Models of the Female Reproductive System. Bioengineering (Basel) 2019 ; 6.
  • [37.] Ferraz M, Rho H S, Hemerich D, Henning H H W, van Tol H T A , Holker M, et al. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Comm 2018 ; 9 : 4934.
  • [38.] Kilcoyne K R, Mitchell R T. Effect of environmental and pharmaceutical exposures on fetal testis development and function : a systematic review of human experimental data. Hum Reprod Update 2019 ; 25 : 397-421.
  • [39.] Baert Y, Ruetschle I, Cools W, Oehme A, Lorenz A, Marx U, et al., A multi-organ-chip coculture of liver and testis equivalents : a first step toward a systemic male reprotoxicity model. Hum Reprod 2020 ; 35 : 1029-44.
  • [40.] McLean I C, Schwerdtfeger L A, Tobet S A, Henry C S. Powering ex vivo tissue models in microfluidic systems. Lab Chip 2018 ; 18 : 1399-410.
  • [41.] Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep 2016; 6 : 21472.
  • [42.] Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction : is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research?, Mol Hum Reprod 2020 ; 26 : 179-92.
  • [43.] Sharma S, Venzac B, Burgers T, Schlatt S, Le Gac S. Testison-chip platform to study ex vivo primate spermatogenesis and endocrine dynamics. Organs-on-a-Chip 2022; 4: 100023.
  • [44.] Xiao S, Coppeta J R, Rogers H B, Isenberg B C, Zhu J, Olalekan S A et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Comm 2017 ; 8 : 14584.
  • [45.] Berthier E, Young E W, Beebe D. Engineers are from PDMSland, Biologists are from Polystyrenia. Lab Chip 2012 ; 12 : 1224-37.