JLE

Médecine de la Reproduction

MENU

Conséquences biologiques de l’âge maternel avancé sur la reproduction Volume 21, numéro 3, Juillet-Août-Septembre 2019

  • [1] Goossens V., Harton G., Moutou C., Traeger-Synodinos J., Van Rij M., Harper J.C. ESHRE PGD consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum Reprod. 2009;24:1786-1810.
  • [2] Ubaldi F.M., Cimadomo D., Capalbo A. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience. Fertil Steril. 2017;107:1173-1180.
  • [3] Li L., Zheng P., Dean J. Maternal control of early mouse development. Development. 2010;137:859-870.
  • [4] Stitzel M.L., Seydoux G. Regulation of the oocyte-to-zygote transition. Science. 2007;316:407-408.
  • [5] Ottolini C.S., Capalbo A., Newnham L. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes. Nat Protoc. 2016;11:1229-1243.
  • [6] Capalbo A., Hoffmann E.R., Cimadomo D., Maria Ubaldi F., Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23:706-722. 6
  • [7] Luo S., Valencia C.A., Zhang J. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018;115:13039-13044.
  • [8] Wilding M., Dale B., Marino M. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16:909-917.
  • [9] Diez-Juan A., Rubio C., Marin C. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534-41 e1.
  • [10] Konstantinidis M., Alfarawati S., Hurd D. Simultaneous assessment of aneuploidy, polymorphisms, and mitochondrial DNA content in human polar bodies and embryos with the use of a novel microarray platform. Fertil Steril. 2014;102:1385-1392.
  • [11] Tatone C., Carbone M.C., Falone S. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod. 2006;12:655-660.
  • [12] Eichenlaub-Ritter U. Oocyte ageing and its cellular basis. Int J Dev Biol. 2012;56:841-852.
  • [13] Fragouli E., McCaffrey C., Ravichandran K. Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study. Hum Reprod. 2017;32:2340-2347.
  • [14] Humaidan P., Kristensen S.G., Coetzee K. Mitochondrial DNA, a new biomarker of embryonic implantation potential: fact or fiction? Fertil Steril. 2018;109:61-62.
  • [15] Stigliani S., Orlando G., Massarotti C. Non-invasive mitochondrial DNA quantification on day 3 predicts blastocyst development: a prospective, blinded, multi-centric study. Mol Hum Reprod. 2019. 10.1093/molehr/gaz032 [Epub ahead of print]
  • [16] Woods D.C., Tilly J.L. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33:410-421.
  • [17] Labarta E., de Los Santos M.J., Herraiz S. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing fertilization-a randomized pilot study. Fertil Steril. 2019;111:86-96. in vitro
  • [18] Keefe D.L. Telomeres and meiosis in health and disease. Cell Mol Life Sci. 2007;64:115-116.
  • [19] Treff N.R., Su J., Taylor D., Scott R.T. Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7:e1002161.
  • [20] Nambiar M., Smith G.R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol. 2016;54:188-197.
  • [21] Tsutsumi M., Fujiwara R., Nishizawa H. Age-related decrease of meiotic cohesins in human oocytes. PLoS One. 2014;9:e96710.
  • [22] Remeseiro S., Cuadrado A., Carretero M. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 2012;31:2076-2089.
  • [23] Bennabi I., Terret M.E., Verlhac M.H. Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol. 2016;215:611-619.
  • [24] Qiao J., Wang Z.B., Feng H.L. The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med. 2014;38:54-85.
  • [25] Lagirand-Cantaloube J., Ciabrini C., Charrasse S. Loss of centromere cohesion in aneuploid human oocytes correlates with decreased kinetochore localization of the sac proteins Bub1 and Bubr1. Sci Rep. 2017;7:44001.
  • [26] Grondahl M.L., Yding Andersen C., Bogstad J., Nielsen F.C., Meinertz H., Borup R. Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod. 2010;25:957-968.
  • [27] Ge Z.J., Schatten H., Zhang C.L., Sun Q.Y. Oocyte ageing and epigenetics. Reproduction. 2015;149:R103-R114.
  • [28] Brzezinski A., Saada A., Miller H., Brzezinski-Sinai N.A., Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J Ovarian Res. 2018;11:95.
  • [29] Sunkara S.K., Rittenberg V., Raine-Fenning N., Bhattacharya S., Zamora J., Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26:1768-1774.
  • [30] Polyzos N.P., Drakopoulos P., Parra J. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including approximately 15,000 women. Fertil Steril. 2018;110:661-70 e1. in vitro
  • [31] Alviggi C., Conforti A., Esteves S.C. Recombinant luteinizing hormone supplementation in assisted reproductive technology: a systematic review. Fertil Steril. 2018;109:644-664.
  • [32] Revelli A., Casano S., Salvagno F., Delle Piane L. Milder is better? Advantages and disadvantages of “mild” ovarian stimulation for human fertilization. Reprod Biol Endocrinol. 2011;9:25. in vitro
  • [33] Duffy J.M., Ahmad G., Mohiyiddeen L., Nardo L.G., Watson A. Growth hormone for fertilization. Cochrane Database Syst Rev. 2010CD000099. in vitro
  • [34] Bosdou J.K., Venetis C.A., Dafopoulos K. Transdermal testosterone pretreatment in poor responders undergoing ICSI: a randomized clinical trial. Hum Reprod. 2016;31:977-985.
  • [35] Yeung T., Chai J., Li R., Lee V., Ho P.C., Ng E. A double-blind randomised controlled trial on the effect of dehydroepiandrosterone on ovarian reserve markers, ovarian response and number of oocytes in anticipated normal ovarian responders. BJOG. 2016;123:1097-1105.
  • [36] Humaidan P., Alviggi C., Fischer R., Esteves S.C. The novel POSEIDON stratification of ‘Low prognosis patients in Assisted Reproductive Technology’ and its proposed marker of successful outcome. F1000Res. 2016;5:2911.
  • [37] Vaiarelli A., Cimadomo D., Ubaldi N., Rienzi L., Ubaldi F.M. What is new in the management of poor ovarian response in IVF? Curr Opin Obstet Gynecol. 2018;30:155-162.
  • [38] Chatziparasidou A., Nijs M., Moisidou M. Accumulation of oocytes and/or embryos by vitrification: a new strategy for managing poor responder patients undergoing pre implantation diagnosis. F1000Res. 2013;2:240.
  • [39] Vaiarelli A., Cimadomo D., Trabucco E. Double stimulation in the same ovarian cycle (DuoStim) to maximize the number of oocytes retrieved from poor prognosis patients: a multicenter experience and SWOT analysis. Front Endocrinol (Lausanne). 2018;9:317.
  • [40] Baerwald A.R., Adams G.P., Pierson R.A. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73-91.
  • [41] Martinez F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Hum Reprod. 2017;32:1802-1811.
  • [42] Rienzi L., Gracia C., Maggiulli R. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23:139-155. versus
  • [43] Forman E.J., Li X., Ferry K.M., Scott K., Treff N.R., Scott R.T. Jr. Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after intracytoplasmic sperm injection: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril. 2012;98:644-649.
  • [44] Stigliani S., Moretti S., Anserini P., Casciano I., Venturini P.L., Scaruffi P. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum Reprod. 2015;30:2519-2526.
  • [45] Doyle J.O., Richter K.S., Lim J., Stillman R.J., Graham J.R., Tucker M.J. Successful elective and medically indicated oocyte vitrification and warming for autologous fertilization, with predicted birth probabilities for fertility preservation according to number of cryopreserved oocytes and age at retrieval. Fertil Steril. 2016;105:459-66 e2. in vitro
  • [46] Sauer M.V. Reproduction at an advanced maternal age and maternal health. Fertil Steril. 2015;103:1136-1143.
  • [47] Laopaiboon M., Lumbiganon P., Intarut N. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG. 2014;121:49-56. Suppl. 1
  • [48] Dahdouh E.M., Balayla J., Garcia-Velasco J.A. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil Steril. 2015;104:1503-1512.
  • [49] Chen M., Wei S., Hu J., Quan S. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis. PLoS One. 2015;10:e0140779.
  • [50] Forman E.J., Hong K.H., Ferry K.M. fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100:100-7 e1. In vitro
  • [51] Scott R.T. Jr., Upham K.M., Forman E.J., Zhao T., Treff N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100:624-630.
  • [52] Mastenbroek S., Twisk M., van der Veen F., Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17:454-466.
  • [53] Treff N.R., Su J., Tao X., Northrop L.E., Scott R.T. Jr. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod. 2011;17:335-343.
  • [54] Verpoest W., Staessen C., Bossuyt P.M. Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial. Hum Reprod. 2018;33:1767-1776. 9
  • [55] Capalbo A., Bono S., Spizzichino L. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod. 2013;28:509-518.
  • [56] Scott R.T. Jr., Ferry K., Su J., Tao X., Scott K., Treff N.R. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97:870-875.
  • [57] Capalbo A., Ubaldi F.M., Rienzi L., Scott R., Treff N. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum Reprod. 2017;32:492-498. 3
  • [58] Popovic M., Dhaenens L., Taelman J. Extended culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy. Hum Reprod. 2019;34:758-769. in vitro
  • [59] Tiegs A.W., Hodes-Wertz B., McCulloh D.H., Munne S., Grifo J.A. Discrepant diagnosis rate of array comparative genomic hybridization in thawed euploid blastocysts. J Assist Reprod Genet. 2016;33:893-897.
  • [60] Werner M.D., Leondires M.P., Schoolcraft W.B. Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low. Fertil Steril. 2014;102:1613-1618.
  • [61] Scarica C., Cimadomo D., Dovere L. An integrated investigation of oocyte developmental competence: expression of key genes in human cumulus cells, morphokinetics of early divisions, blastulation, and euploidy. J Assist Reprod Genet. 2019;36:875-887. 5
  • [62] Capalbo A., Ubaldi F.M., Cimadomo D. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105:225-35 e1-3.
  • [63] Siristatidis C.S., Sertedaki E., Vaidakis D., Varounis C., Trivella M. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst Rev. 2018;3:CD011872.
  • [64] Tran D., Cooke S., Illingworth P.J., Gardner D.K. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34:1011-1018. 6
  • [65] Xu J., Fang R., Chen L. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for fertilization. Proc Natl Acad Sci U S A. 2016;113:11907-11912. in vitro
  • [66] Rubio C., Rienzi L., Navarro-Sanchez L. Embryonic cell-free DNA trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112:510-519. versus3
  • [67] May-Panloup P., Boucret L., Chao de la Barca J.M. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22:725-743.
  • [68] Barritt J., Willadsen S., Brenner C., Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7:428-435.
  • [69] Kristensen S.G., Pors S.E., Andersen C.Y. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod. 2017;32:725-732.
  • [70] Schatten H., Sun Q.Y., Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12:111.
  • [71] Craven L., Tuppen H.A., Greggains G.D. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465:82-85.
  • [72] Zuo E., Huo X., Yao X. CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol. 2017;18:224.
  • [73] Johnson J., Canning J., Kaneko T., Pru J.K., Tilly J.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145-150.
  • [74] Silvestris E., Cafforio P., D’Oronzo S., Felici C., Silvestris F., Loverro G. differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Hum Reprod. 2018;33:464-473. In vitro3