John Libbey Eurotext

Prolonged seizures: what are the mechanisms that predispose or cease to be protective? A review of animal data Volume 16, numéro spécial 1, October 2014

  • [Andre et al., 2000] Andre V., Ferrandon A., Marescaux C., Nehlig A. The lesional and epileptogenic consequences of lithium-pilocarpine-induced status epilepticus are affected by previous exposure to isolated seizures: effects of amygdala kindling and maximal electroshocks. Neuroscience. 2000;99:469-481.
  • [Andre et al., 2001] Andre V., Marescaux C., Nehlig A., Fritschy J.M. Alterrations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus. 2001452-468.
  • [Avanzini and Franceschetti, 2003] Avanzini G., Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol. 2003;2:33-42.
  • [Avoli et al., 1996a] Avoli M., Barbarosie M., Lücke A., Nagao T., Lopantsev V., Köhling R. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci. 1996;16:3912-3924.
  • [Avoli et al., 1996b] Avoli M., Köhling R., Barbarosie M. Anoxia blocks the presynaptic control of GABA release at inhibitory terminals in the rat hippocampus. Neuroscience. 1996;75:999-1002.
  • [Avoli et al., 2005] Avoli M., Louvel J., Pumain R., Köhling R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol. 2005;77:166-200.
  • [Babity et al., 1997] Babity J.M., Armstrong J.N., Plumier J.C., Currie R.W., Robertson H.A. A novel seizure-induced synaptotagmin gene identified by differential display. PNAS. 1997;94:2638-2641.
  • [Barmashenko et al., 2011] Barmashenko G., Hefft S., Aertsen A., Kirschstein T., Köhling R. Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus. Epilepsia. 2011;52:1570-1578.
  • [Becker et al., 2008] Becker A.J., Pitsch J., Sochivko D. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28:13341-13353.
  • [Ben-Ari and Lagowska, 1978] Ben-Ari Y., Lagowska J. Epileptogenic action of intra-amygdaloid injection of kainic acid. C R Acad Sci Hebd Seances Acad Sci D. 1978;287:813-816.
  • [Ben-Ari et al., 1979] Ben-Ari Y., Lagowska J., Tremblay E., Le Gal La S.G. A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res. 1979;163:176-179.
  • [Bengzon et al., 1997] Bengzon J., Kokaia Z., Elmer E., Nanobashvili A., Kokaia M., Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. PNAS. 1997;94:10432-10437.
  • [Bernard et al., 1998] Bernard C., Esclapez M., Hirsch J.C., Ben Ari Y. Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis. Epilepsy Res. 1998;32:93-103.
  • [Bhaskaran and Smith, 2010] Bhaskaran M.D., Smith B.N. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy. Exp Neurol. 2010;223:529-536.
  • [Bikson et al., 2003a] Bikson M., Hahn P.J., Fox J.E., Jefferys J.G. Depolarization block of neurons during maintenance of electrographic seizures. J Neurophysiol. 2003;90:2402-2408.
  • [Bikson et al., 2003b] Bikson M., Fox J.E., Jefferys J.G. Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol. 2003;89:2330-2333.
  • [Blondeau et al., 2000] Blondeau N., Plamondon H., Richelme C., Heurteaux C., Lazdunski M. K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience. 2000;100:465-474.
  • [Boison, 2005] Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11:25-36.
  • [Bragin et al., 2009] Bragin D.E., Sanderson J.L., Peterson S., Connor J.A., Muller W.S. Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus. Eur J Neurosci. 2009;30:611-624.
  • [Brewster et al., 2002] Brewster A., Bender R.A., Chen Y., Dube C., Eghbal-Ahmadi M., Baram T.Z. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci. 2002;22:4591-4599.
  • [Brooks-Kayal, 2005] Brooks-Kayal A.R. Rearranging receptors. Epilepsia. 2005;46:29-38.
  • [Caspers and Speckmann, 1972] Caspers H., Speckmann E.-J. Cerebral pO, pCO and pH: changes during convulsive activity and their significance for spontaneouse arrest of seizures. Epilepsia. 1972;13:699-725. 22
  • [Chen et al., 2001] Chen K., Aradi I., Thon N., Eghbal-Ahmadi M., Baram T.Z., Soltesz I. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med. 2001;7:331-337.
  • [Chen et al., 2011] Chen S., Su H., Yue C. An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol. 2011;105:117-129.
  • [Chuang et al., 2010] Chuang Y.C., Chen S.D., Lin T.K. Transcriptional upregulation of nitric oxide synthase II by nuclear factor-kappa B promotes apoptotic neuronal cell death in the hippocampus following experimental status epilepticus. J Neurosci Res. 2010;88:1898-1907.
  • [Cohen and Fields, 2004] Cohen J.E., Fields R.D. Extracellular calcium depletion in synaptic transmission. Neuroscientist. 2004;10:12-17.
  • [Cohen et al., 2002] Cohen I., Navarro V., Clemenceau S., Baulac M., Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002;298:1418-1421.
  • [de Curtis et al., 1998] de Curtis M., Manfridi A., Biella G. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J Neurosci. 1998;18:7543-7551.
  • [DeLorenzo and Morris, 1999] DeLorenzo R.J., Morris T. Long-term modulation of gene expression in epilepsy. Neuroscientist. 1999;5:86-89.
  • [Doman and Pelligra, 2004] Doman G., Pelligra R. A unifying concept of seizure onset and termination. Med Hypotheses. 2004;62:740-745.
  • [Domann et al., 1991] Domann R., Uhlig S., Dorn T., Witte O.W. Participation of interneurons in penicillin-induced epileptic discharges. Exp Brain Res. 1991;83:683-686.
  • [Dube et al., 2010] Dube C.M., Ravizza T., Hamamura M. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci. 2010;30:7484-7494.
  • [Dunwiddie and Masino, 2001] Dunwiddie T.V., Masino S.A. The role and regulation of adenosine in the central nervous system. Ann Rev Neurosci. 2001;24:31-55.
  • [During and Spencer, 1992] During M.J., Spencer D.D. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32:618-624.
  • [Dzhala et al., 2010] Dzhala V.I., Kuchibhotla K.V., Glykys J.C. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J Neurosci. 2010;30:11745-11761.
  • [Fedele et al., 2005] Fedele D.E., Gouder N., Guttinger M. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain. 2005;128:2383-2395.
  • [Galanopoulou, 2008] Galanopoulou A.S. Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J Neurosci. 2008;28:1557-1567.
  • [Gashi et al., 2007] Gashi E., Avallone J., Webster T., Friedman L.K. Altered excitability and distribution of NMDA receptor subunit proteins in cortical layers of rat pups following multiple perinatal seizures. Brain Res. 2007;1145:56-65.
  • [Germano and Sperber, 1997] Germano I.M., Sperber E.F. Increased seizure susceptibility in adult rats with neuronal migration disorders. Brain Res. 1997;777:219-222.
  • [Germano et al., 1998] Germano I.M., Sperber E.F., Ahuja S., Moshé S.L. Evidence of enhanced kindling and hippocampal neuronal injury in immature rats with neuronal migration disorders. Epilepsia. 1998;39:1253-1260.
  • [Gigout et al., 2006] Gigout S., Louvel J., Kawasaki H. Effects of gap junction blockers on human neocortical synchronization. Neurobiol Dis. 2006;22:496-508.
  • [Gilby et al., 2005] Gilby K.L., Da Silva A.G., McIntyre D.C. Differential GABA(A) subunit expression following status epilepticus in seizure-prone and seizure-resistant rats: a putative mechanism for refractory drug response. Epilepsia. 2005;46:3-9.
  • [Hamil et al., 2012] Hamil N.E., Cock H.R., Walker M.C. Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia. 2012;53:177-188.
  • [Hammers et al., 2007] Hammers A., Asselin M.C., Hinz R. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain. 2007;130:1009-1016.
  • [Heinemann et al., 2002] Heinemann U., Buchheim K., Gabriel S., Kann O., Kovacs R., Schuchmann S. Cell death and metabolic activity during epileptiform discharges and status epilepticus. Prog Brain Res. 2002;135:197-210.
  • [Heinemann et al., 2012] Heinemann U., Kaufer D., Friedman A. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia. 2012;60:1251-1257.
  • [Holmes and Ben-Ari, 2001] Holmes G.L., Ben-Ari Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res. 2001;49:320-325.
  • [Holmes et al., 2002] Holmes G.L., Khazipov R., Ben Ari Y. Seizure-induced damage in the developing human: relevance of experimental models. Prog Brain Res. 2002;135:321-324.
  • [Isokawa, 1996] Isokawa M. Decrement of GABA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus. J Neurophysiol. 1996;75:1901-1908. A
  • [Isokawa and Alger, 2005] Isokawa M., Alger B.E. Retrograde endocannabinoid regulation of GABAergic inhibition in the rat dentate gyrus granule cell. J Physiol. 2005;567:1001-1010.
  • [Jensen et al., 1992] Jensen F.E., Holmes G.L., Lombroso C.T., Blume H.K., Firkusny I.R. Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia. 1992;33:971-980.
  • [Jensen et al., 1998] Jensen F.E., Wang C., Stafstrom C.E., Liu Z., Geary C., Stevens M.C. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia in vivo. J Neurophysiol. 1998;79:73-81.
  • [Jimenez-Mateos and Henshall, 2013] Jimenez-Mateos E.M., Henshall D.C. Seizure preconditioning and epileptic tolrance: models and mechanisms. Int J Physiol Pathophysiol Phramacol. 2013;1:180-191.
  • [Jimenez-Mateos et al., 2008] Jimenez-Mateos E.M., Hatazaki S., Johnson M.B. Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiol Dis. 2008;32:442-453.
  • [Jones et al., 2007] Jones J., Stubblefield E.A., Benke T.A., Staley K.J. Desynchronization of glutamate release prolongs synchronous CA3 network activity. J Neurophysiol. 2007;97:3812-3818.
  • [Kann et al., 2005] Kann O., Kovacs R., Njunting M. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain. 2005;128:2396-2407.
  • [Karler et al., 1986] Karler R., Calder L.D., Turkanis S.A. Prolonged CNS hyperexcitability in mice after a single exposure to delta-9-tetrahydrocannabinol. Neuropharmacology. 1986;25:441-446.
  • [Kelly and McIntyre, 1994] Kelly M.E., McIntyre D.C. Hippocampal kindling protects several structures from the neuronal damage resulting from kainic acid-induced status epilepticus. Brain Res. 1994;634:245-256.
  • [Khalilov et al., 2003] Khalilov I., Holmes G.L., Ben-Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci. 2003;6:1079-1085.
  • [Khazipov and Holmes, 2003] Khazipov R., Holmes G.L. Synchronization of kainate-induced epileptic activity GABAergic inhibition in the superfused rat hippocampus in vivo. J Neurosci. 2003;23:5337-5341. via
  • [Kirchner et al., 2006] Kirchner A., Veliskova J., Velisek L. Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Eur J Neurosci. 2006;23:1512-1522.
  • [Koepp et al., 1998] Koepp M.J., Richardson M.P., Brooks D.J., Duncan J.S. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet. 1998;352:952-955.
  • [Köhling et al., 1995] Köhling R., Lücke A., Nagao T., Speckmann E.J., Avoli M. Extracellular potassium elevations in the hippocampus of rats with long-term pilocarpine seizures. Neurosci Lett. 1995;201:87-91.
  • [Köhling et al., 1998] Köhling R., Lücke A., Straub H. Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain. 1998;121:1073-1087.
  • [Köhling et al., 2000] Köhling R., Vreugdenhil M., Bracci E., Jefferys J.G. Ictal epileptiform activity is facilitated by hippocampal GABAA receptor-mediated oscillations. J Neurosci. 2000;20:6820-6829.
  • [Köhling et al., 2001] Köhling R., Gladwell S.J., Bracci E., Vreugdenhil M., Jefferys J.G. Prolonged epileptiform bursting induced by 0-Mg(2+) in rat hippocampal slices depends on gap junctional coupling. Neuroscience. 2001;105:579-587.
  • [Kondratyev et al., 2001] Kondratyev A., Sahibzada N., Gale K. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res Mol Brain Res. 2001;91:1-13.
  • [Kramer et al., 2012] Kramer M.A., Truccolo W., Eden U.T. Human seizures self-terminate across spatial scales a critical transition. PNAS. 2012;109:21116-21121. via
  • [Kudela et al., 2003] Kudela P., Franaszczuk P.J., Bergey G.K. Reduction of intracellular calcium removal rate can explain changes in seizure dynamics: studies in neuronal network models. Epilepsy Res. 2003;57:95-109.
  • [Lado and Moshé, 2008] Lado F.A., Moshé S.L. How do seizures stop?. Epilepsia. 2008;49:1651-1664.
  • [Lawrence et al., 2010] Lawrence C., Martin B.S., Sun C., Williamson J., Kapur J. Endogenous neurosteroid synthesis modulates seizure frequency. Ann Neurol. 2010;67:689-693.
  • [Le Van Quyen et al., 2006] Le Van Quyen M., Khalilov I., Ben Ari Y. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci. 2006;29:419-427.
  • [Lerche et al., 2001] Lerche H., Jurkat-Rott K., Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet. 2001;106:146-159.
  • [Lerche et al., 2013] Lerche H., Shah M., Beck H., Noebels J., Johnston D., Vincent A. Ion channels in genetic and acquired forms of epilepsy. J Physiol. 2013;591:753-764.
  • [Lewin and Bleck, 1981] Lewin E., Bleck V. Electroshock seizures in mice: effect on brain adenosine and its metabolites. Epilepsia. 1981;22:577-581.
  • [Liebregts et al., 2002] Liebregts M.T., McLachlan R.S., Leung L.S. Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann Neurol. 2002;52:318-326.
  • [Loacker et al., 2007] Loacker S., Sayyah M., Wittmann W., Herzog H., Schwarzer C. Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect kappa opioid receptors. Brain. 2007;130:1017-1028. via
  • [Löscher and Frey, 1987] Löscher W., Frey J.M. Postictal refractoriness associated with reduction of glutamic acid decarboxylase in discrete brain regions in epilepsy-prone gerbils. Biochem Pharmacol. 1987;36:2695-2699.
  • [Löscher and Brandt, 2010] Löscher W., Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62:668-700.
  • [Löscher and Köhling, 2010] Löscher W., Köhling R. Functional, metabolic and synaptic changes after seizures as potential targets for antiepileptic therap. y. Epilepsy Behav. 2010;19:105-113.
  • [Lux et al., 1986] Lux H.D., Heinemann U., Dietzel I. Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol. 1986;44:619-639.
  • [Macdonald and Kapur, 1999] Macdonald R.L., Kapur J. Acute cellular alterations in the hippocampus after status epilepticus. Epilepsia. 1999;40:S9-20.
  • [Marksteiner et al., 1989] Marksteiner J., Sperk G., Maas D. Differential increases in brain levels of neuropeptide Y and vasoactive intestinal polypeptide after kainic acid-induced seizures in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1989;339:173-177.
  • [McCloskey and Scharfman, 2011] McCloskey D.P., Scharfman H.E. Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures. Epilepsy Res. 2011;97:92-102.
  • [Müller et al., 2013] Müller L., Tokay T., Porath K., Köhling R., Kirschstein T. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area upregulation of NR2B. Neurobiol Dis. 2013;54:183-193. via
  • [Namba et al., 1989] Namba H., Iwasa H., Kubota M. Local cerebral glucose utilization in the postictal phase of amygdaloid kindled rats. Brain Res. 1989;486:221-227.
  • [Nehlig et al., 2002] Nehlig A., Dube C., Koning E. Status epilepticus induced by lithium-pilocarpine in the immature rat does not change the long-term susceptibility to seizures. Epilepsy Res. 2002;51:189-197.
  • [Noebels, 2003] Noebels J.L. The biology of epilepsy genes. Annu Rev Neurosci. 2003;26:599-625.
  • [Nutt et al., 1981] Nutt D.J., Cowen P.J., Green A.R. Studies on the post-ictal rise in seizure threshold. Europ J Pharmacol. 1981;71:287-295.
  • [Parent et al., 1997] Parent J.M., Yu T.W., Leibowitz R.T., Geschwind D.H., Sloviter R.S., Lowenstein D.H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17:3727-3738.
  • [Parent et al., 2006] Parent J.M., von dem B.N., Lowenstein D.H. Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus. 2006;16:321-328.
  • [Pathak et al., 2007] Pathak H.R., Weissinger F., Terunuma M. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci. 2007;27:14012-14022.
  • [Penner et al., 2001] Penner M.R., Pinaud R., Robertson H.A. Rapid kindling of the hippocampus protects against neural damage resulting from status epilepticus. Neuroreport. 2001;12:453-457.
  • [Pinto et al., 2005] Pinto D.J., Patrick S.L., Huang W.C., Connors B.W. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J Neurosci. 2005;25:8131-8140.
  • [Porter et al., 2006] Porter B.E., Cui X.N., Brooks-Kayal A.R. Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons. Eur J Neurosci. 2006;23:2857-2863.
  • [Prince and Wilder, 1967] Prince D.A., Wilder B.J. Control mechanisms in cortical epileptogenic foci. Arch Neurol. 1967;16:194-202.
  • [Roopun et al., 2010] Roopun A.K., Simonotto J.D., Pierce M.L. A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. PNAS. 2010;107:338-343.
  • [Ryley et al., 2013] Ryley P.R., Albertson A.J., Buckingham S.C. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience. 2013;248C:602-619.
  • [Scantlebury et al., 2004] Scantlebury M.H., Ouellet P.L., Psarropoulou C., Carmant L. Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia. 2004;45:592-600.
  • [Scantlebury et al., 2007] Scantlebury M.H., Heida J.G., Hasson H.J. Age-dependent consequences of status epilepticus: animal models. Epilepsia. 2007;48:75-82.
  • [Schevon et al., 2012] Schevon C.A., Weiss S.A., McKhann G. Jr. Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun. 2012;3:1060.
  • [Schuchmann et al., 2006] Schuchmann S., Schmitz D., Rivera C. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med. 2006;12:817-823.
  • [Schulz et al., 2012] Schulz R., Kirschstein T., Brehme H., Porath K., Mikkat U., Köhling R. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis. 2012;45:337-347.
  • [Shao and Dudek, 2004] Shao L.R., Dudek F.E. Increased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy. J Neurophysiol. 2004;92:1366-1373.
  • [Shao and Dudek, 2006] Shao L.R., Dudek F.E. Changes in mIPSCs and sIPSCs after kainate treatment: status epilepticus-induced neuronal loss or direct activation of kainate receptors?. J Neurophysiol. 2006;96:961-962.
  • [Sloviter, 1991] Sloviter R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “Dormant Basket Cell” hypothesis and its possible relevance to temporal lobe epielepsy. Hippocampus. 1991;1:41-66.
  • [Somjen, 1984] Somjen G.G. Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression. Brain Res. 1984;311:186-188.
  • [Staley et al., 1998] Staley K.J., Longacher M., Bains J.S., Yee A. Presynaptic modulation of CA3 network activity. Nat Neurosci. 1998;1:201-209.
  • [Stegen et al., 2009] Stegen M., Young C.C., Haas C.A., Zentner J., Wolfart J. Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon's horn sclerosis. Epilepsia. 2009;50:646-653.
  • [Stell et al., 2003] Stell B.M., Brickley S.G., Tang C.Y., Farrant M., Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. PNAS. 2003;100:14439-14444.
  • [Suffczynski et al., 2006] Suffczynski P., Lopes da Silva F.H., Parra J. Dynamics of epileptic phenomena determined from statistics of ictal transitions. IEEE Trans Biomed Eng. 2006;53:524-532.
  • [Sutula et al., 2003] Sutula T.P., Hagen J., Pitkänen A. Do epileptic seizures damage the brain?. Curr Opin Neurol. 2003;16:189-195.
  • [Swartzwelder et al., 1988] Swartzwelder H.S., Anderson W.W., Wilson W.A. Mechanism of electrographic seizure generation in the hippocampal slice in Mg2+-free medium: the role of GABAa inhibition. Epilepsy Res. 1988;2:239-245.
  • [Swijsen et al., 2012] Swijsen A., Avila A., Brone B., Janssen D., Hoogland G., Rigo J.M. Experimental early-life febrile seizures induce changes in GABA(A) R-mediated neurotransmission in the dentate gyrus. Epilepsia. 2012;53:1968-1977.
  • [Timofeev et al., 2004] Timofeev I., Grenier F., Steriade M. Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J Neurophysiol. 2004;92:1133-1143.
  • [Toman et al., 1946] Toman J.E.P., Swinyard E.A., Goodman L.S. Properties of maximal seizures and their alteration by anticonvulsant drugs and other agents. J Neurophysiol. 1946;9:231-239.
  • [Trevelyan and Schevon, 2013] Trevelyan A.J., Schevon C.A. How inhibition influences seizure propagation. Neuropharmacology. 2013;69:45-54.
  • [Trevelyan et al., 2006] Trevelyan A.J., Sussillo D., Watson B.O., Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J Neurosci. 2006;26:12447-12455.
  • [Trevelyan et al., 2007] Trevelyan A.J., Sussillo D., Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci. 2007;27:3383-3387.
  • [Tu et al., 2005] Tu B., Timofeeva O., Jiao Y., Nadler J.V. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci. 2005;25:1718-1729.
  • [Tuff et al., 1983] Tuff L.P., Racine R.J., Adamec R. The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res. 1983;277:79-90.
  • [Turski et al., 1983] Turski W.A., Cavalheiro E.A., Schwarz M., Czuczwar S.J., Kleinrok Z., Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9:315-335.
  • [Velisek, 1998] Velisek L. Extracellular acidosis and high levels of carbon dioxide suppress synaptic transmission and prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Hippocampus. 1998;8:24-32.
  • [Velisek et al., 1994] Velisek L., Dreier J.P., Stanton P.K., Heinemann U., Moshé S.L. Lowering of extracellular pH suppresses low-Mg(2+)-induces seizures in combined entorhinal cortex-hippocampal slices. Exp Brain Res. 1994;101:44-52.
  • [Vezzani et al., 1999] Vezzani A., Sperk G., Colmers W.F. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci. 1999;22:25-30.
  • [Vezzani et al., 2002] Vezzani A., Moneta D., Richichi C. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43:30-35.
  • [Wada et al., 1973] Wada J.A., Sato M., Corcoran M.E. Antiepileptic properties of 9-tetrahydrocannabinol. Exp Neurol. 1973;39:157-165.
  • [Wada et al., 1975] Wada J.A., Wake A., Sato M., Corcoran M.E. Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled cats. Epilepsia. 1975;16:503-510.
  • [Walker and Kullmann, 2013] Walker MC, Kullmann DM. Tonic GABA(A) receptor-mediated signaling in epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds. Jasper's basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information (US), 2013: 1-13.
  • [Walker et al., 2002] Walker M.C., White H.S., Sander J.W.A.S. Disease modification in partial epilepsy. Brain. 2002;125:1937-1950.
  • [Wallraff et al., 2006] Wallraff A., Köhling R., Heinemann U., Theis M., Willecke K., Steinhauser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26:5438-5447.
  • [Wasterlain et al., 2000] Wasterlain C.G., Liu H., Mazarati A.M. Self-sustaining status epilepticus: a condition maintained by potentiation of glutamate receptors and by plastic changes in substance P and other peptide neuromodulators. Epilepsia. 2000;41:S134-S143.
  • [Wasterlain et al., 2002] Wasterlain C.G., Mazarati A.M., Naylor D. Short-term plasticity of hippocampal neuropeptides and neuronal circuitry in experimental status epilepticus. Epilepsia. 2002;43:20-29.
  • [Wilhelm et al., 2012] Wilhelm E.A., Souza A.C., Gai B.M., Chagas P.M., Roehrs J.A., Nogueira C.W. Hyperthermic seizures enhance responsiveness to pentylenetetrazole and induce cognitive dysfunction: protective effect of 3-alkynyl selenophene. Life Sci. 2012;90:666-672.
  • [Xiong et al., 2000] Xiong Z.Q., Saggau P., Stringer J.L. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci. 2000;20:1290-1296.
  • [Yamada et al., 2001] Yamada K., Ji J.J., Yuan H. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science. 2001;292:1543-1546.
  • [Young and Dragunow, 1994] Young D., Dragunow M. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience. 1994;58:245-261.
  • [Zhang and Ko, 2009] Zhang H.N., Ko M.C. Seizure activity involved in the up-regulation of BDNF mRNA expression by activation of central mu opioid receptors. Neuroscience. 2009;161:301-310.
  • [Zhang et al., 2004] Zhang G., Raol Y.S., Hsu F.C., Brooks-Kayal A.R. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem. 2004;88:91-101.
  • [Zhang et al., 2006] Zhang K., Peng B.W., Sanchez R.M. Decreased IH in hippocampal area CA1 pyramidal neurons after perinatal seizure-inducing hypoxia. Epilepsia. 2006;47:1023-1028.
  • [Ziemann et al., 2008] Ziemann A.E., Schnizler M.K., Albert G.W. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11:816-822.