JLE

Hématologie

MENU

Enhancers, spatial chromosome structuring and pathological changes: towards a better understanding of complex genome alterations Article à paraître

  • [1] Cico A., Andrieu-Soler C., Soler E. Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Lett. 2016;590:4084-4104.
  • [2] Dixon J.R., Gorkin D.U., Ren B. Chromatin domains: the unit of chromosome organization. Mol Cell. 2016;62:668-680.
  • [3] Robson M.I., Ringel A.R., Mundlos S. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol Cell. 2019;74:1110-1122.
  • [4] van den Heuvel A., Stadhouders R., Andrieu-Soler C., Grosveld F., Soler E. Long-range gene regulation and novel therapeutic applications. Blood. 2015;125:1521-1525.
  • [5] Bulger M., Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144:327-339.
  • [6] Fraser P., Pruzina S., Antoniou M., Grosveld F. Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev. 1993;7:106-113.
  • [7] Grosveld F., van Assendelft G.B., Greaves D.R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987;51:975-985.
  • [8] Williamson I., Kane L., Devenney P.S. Developmentally regulated Shh expression is robust to TAD perturbations. Development. 2019;146:dev179523.
  • [9] Bresnick E.H., Johnson K.D. Blood disease-causing and -suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Adv. 2019;3:2045-2056.
  • [10] Korkmaz G., Lopes R., Ugalde A.P. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol. 2016;34:192-198.
  • [11] Li K., Liu Y., Cao H. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat Commun. 2020;11:485.
  • [12] Lara-Astiaso D., Weiner A., Lorenzo- Vivas E. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014;345:943-949.
  • [13] Soucie E.L., Weng Z., Geirsdóttir L. Lineage-specific enhancers activate selfrenewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510.
  • [14] Kieffer-Kwon K.-R., Tang Z., Mathe E. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell. 2013;155:1507-1520.
  • [15] Pomerantz M.M., Ahmadiyeh N., Jia L. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882-884.
  • [16] Javierre B.M., Burren O.S., Wilder S.P. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell. 2016;167:1369-84e19.
  • [17] van der Harst P., Zhang W., Mateo Leach I. Seventy-five genetic loci influencing the human red blood cell. Nature. 2012;492:369-375.
  • [18] Maurano M.T., Humbert R., Rynes E. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190-1195.
  • [19] Tuupanen S., Turunen M., Lehtonen R. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41:885-890.
  • [20] Sur I.K., Hallikas O., Vähärautio A. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science. 2012;338:1360-1363.
  • [21] Thirant C., Ignacimouttou C., Lopez C.K. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryo-blastic leukemia. Cancer Cell. 2017;31:452-465.
  • [22] Benbarche S, Lopez CK, Salataj E, et al. Screening of clustered regulatory elements reveals functional cooperating dependencies in Leukemia. bioRxiv. 2019. Available from: https://doi.org/10.1101/680165 (accessed on ).
  • [23] Herranz D., Ambesi-Impiombato A., Palomero T. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-1137.
  • [24] Mansour M.R., Abraham B.J., Anders L. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346:1373-1377.
  • [25] Navarro J.-M., Touzart A., Pradel L.C. Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun. 2015;6:6094.
  • [26] Liu Y., Li C., Shen S. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet. 2020;52:811-818.
  • [27] Gröschel S., Sanders M.A., Hoogenboezem R. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369-381.
  • [28] Ottema S., Mulet-Lazaro R., Beverloo H.B. Atypical 3q26/MECOM rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood. 2020;136:224-234.
  • [29] Fujiwara T., O’Geen H., Keles S. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36:667-681.
  • [30] Soler E., Andrieu-Soler C., de Boer E. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010;24:277-289.
  • [31] Stadhouders R., Thongjuea S., Andrieu- Soler C. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J. 2012;31:986-999.
  • [32] Stadhouders R., Aktuna S., Thongjuea S. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest. 2014;124:1699-1710.
  • [33] Andrieu-Soler C., Soler E. When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of b-globinopathies. Curr Opin Hematol. 2020;27:141-148.
  • [34] Amano T., Sagai T., Tanabe H., Mizushina Y., Nakazawa H., Shiroishi T. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev Cell. 2009;16:47-57.
  • [35] Lettice L.A., Williamson I., Wiltshire J.H. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev Cell. 2012;22:459-467.
  • [36] Rao S.S.P., Huntley M.H., Durand N.C. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665-1680.
  • [37] Sanyal A., Lajoie B.R., Jain G., Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109-113.
  • [38] Palstra R.-J., Tolhuis B., Splinter E., Nijmeijer R., Grosveld F., de Laat W. The betaglobin nuclear compartment in development and erythroid differentiation. Nat Genet. 2003;35:190-194.
  • [39] Deng W., Lee J., Wang H. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 2012;149:1233-1244.
  • [40] Lee J., Krivega I., Dale R.K., Dean A. The LDB1 complex co-opts CTCF for erythroid lineage-specific long-range enhancer interactions. Cell Rep. 2017;19:2490-2502.
  • [41] Krivega I., Dale R.K., Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev. 2014;28:1278-1290.
  • [42] Kim S., Shendure J. Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell. 2019;76:306-319.
  • [43] Stadhouders R., Cico A., Stephen T. Control of developmentally primed erythroid genes by combinatorial corepressor actions. Nat Commun. 2015;6:8893.
  • [44] Caputo L., Witzel H.R., Kolovos P. The Isl1/Ldb1 complex orchestrates genome-wide chromatin organization to instruct differentiation of multipotent cardiac progenitors. Cell Stem Cell. 2015;17:287-299.
  • [45] Breda L., Motta I., Lourenco S. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016;128:1139-1143.
  • [46] Deng W., Rupon J.W., Krivega I. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158:849-860.
  • [47] Benabdallah N.S., Williamson I., Illingworth R.S. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol Cell. 2019;76:473-84.e7.
  • [48] Lieberman-Aiden E., van Berkum N.L., Williams L. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289-293.
  • [49] Cardozo Gizzi A.M., Cattoni D.I., Fiche J.-B. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol Cell. 2019;74:212-22e5.
  • [50] Szabo Q., Donjon A., Jerkovic’ I. Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat Genet. 2020;52:1151-1157.
  • [51] Nora E.P., Lajoie B.R., Schulz E.G. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381-385.
  • [52] Dixon J.R., Selvaraj S., Yue F. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376-380.
  • [53] Li Y., Haarhuis J.H.I., Sedeño Cacciatore Á. The structural basis for cohesin- CTCF-anchored loops. Nature. 2020;578:472-476.
  • [54] Bonev B., Mendelson Cohen N., Szabo Q. Multiscale 3D genome rewiring during mouse neural development. Cell. 2017;171:557-72e24.
  • [55] Dixon J.R., Jung I., Selvaraj S. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518:331-336.
  • [56] Luppino J.M., Park D.S., Nguyen S.C. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat Genet. 2020;52:840-848.
  • [57] Proudhon C., Snetkova V., Raviram R. Active and inactive enhancers cooperate to exert localized and long-range control of gene regulation. Cell Rep. 2016;15:2159-2169.
  • [58] Lupiáñez D.G., Kraft K., Heinrich V. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012-1025.
  • [59] Franke M., Ibrahim D.M., Andrey G. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature. 2016;538:265-269.
  • [60] Melo U.S., Schöpflin R., Acuna-Hidalgo R. Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am J Hum Genet. 2020;106:872-884.
  • [61] Weischenfeldt J., Dubash T., Drainas A.P. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet. 2017;49:65-74.
  • [62] Hnisz D., Weintraub A.S., Day D.S. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351:1454-1458.
  • [63] Kloetgen A., Thandapani P., Ntziachristos P. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet. 2020;52:388-400.
  • [64] Yang M., Safavi S., Woodward E.L. 13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through enhancer hijacking. Blood. 2020;136:946-956.
  • [65] Flavahan W.A., Drier Y., Johnstone S.E. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature. 2019;575:229-233.
  • [66] Tjalsma S.J., de Laat W. Novel orthogonal methods to uncover the complexity and diversity of nuclear architecture. Curr Opin Genet Dev. 2020;67:10-17.
  • [67] Denker A., de Laat W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 2016;30:1357-1382.
  • [68] Davies J.O.J., Telenius J.M., McGowan S.J. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods. 2016;13:74-80.
  • [69] Stadhouders R., Kolovos P., Brouwer R. Multiplexed chromosome conformation capture sequencing for rapid genomescale high-resolution detection of long-range chromatin interactions. Nat Protoc. 2013;8:509-524.
  • [70] Grob S., Cavalli G. Technical review: a hitchhiker's guide to chromosome conformation capture. Methods Mol Biol. 2018;1675:233-246.
  • [71] Brouwer R.W.W., van den Hout M.C.G.N., van Ijcken W.F.J., Soler E., Stadhouders R. Unbiased interrogation of 3D genome topology using chromosome conformation capture coupled to high-throughput sequencing (4C-Seq). Methods Mol Biol. 2017;1507:199-220.
  • [72] Thongjuea S., Stadhouders R., Grosveld F.G., Soler E., Lenhard B. r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 2013;41:e132.
  • [73] Fullwood M.J., Liu M.H., Pan Y.F. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462:58-64.
  • [74] Mumbach M.R., Rubin A.J., Flynn R.A. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods. 2016;13:919-922.
  • [75] Fagnan A., Bagger F.O., Piqué-Borràs M.R. Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood. 2020;136:698-714.
  • [76] Nagano T., Lubling Y., Várnai C. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017;547:61-67.
  • [77] Collombet S., Ranisavljevic N., Nagano T. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature. 2020;580:142-146.