JLE

Epileptic Disorders

MENU

Normal functional imaging of the basal ganglia Volume 4, supplément 3, Supplement 3, December 2002

1. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ÒprefrontalÓ and ÒlimbicÓ functions. Prog BrainRes 1990; 85: 119-46.

2. Brooks DJ. The role of the basal ganglia in motor control: contributions from PET. J Neurol Sci 1995; 128: 1-13.

3. Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia. Curr OpinNeurobiol 1995; 5: 733-41.

4. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. BrainRes Rev 2000; 31: 236-50.

5. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 2000; 23 (suppl): S8-S19.

6. Brooks DJ, Piccini P, Turjanski N, Samuel M. Neuroimaging of dyskinesia. Ann Neurol 2000; 47: S154-8.

7. Bhatia KP, Marsden CD. Behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain 1994; 117: 859-79.

8. Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985; 5: 776-94.

9. KŸnzle H. Bilateral projections from the precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. BrainRes 1975; 88: 195-209.

10. Parent A, Hazrati L-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 1995; 20: 91-127.

11. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 1996; 6: 342-53.

12. Liles SL, Updyke BV. Projection of the digit and wrist area of precentral gyrus to the putamen: relation between topography and physiological properties of neurons in the putamen. Brain Res 1985; 339: 245-55.

13. Flaherty AW, Graybiel AM. Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 1993; 13: 1120-37.

14. Brown LL, Sharp FR. Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. BrainRes 1995; 686: 207-22.

15. Alexander GE, DeLong MR. Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J Neurophysiol 1985; 53: 1417-30.

16. Kimura M. Behaviorally contingent property of movementrelated activity of the primate putamen. J Neurophysiol 1990; 63: 1277-96.

17. Alexander GE, Crutcher MD. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 1990; 64: 133-49.

18. Inase M, Tokuno H, Nambu A, et al. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. BrainRes 1999; 833: 191-201.

19. KŸnzle H, Akert K. Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 1977; 173: 147-64.

20. Parthasarathy HB, Schall JD, Graybiel AM. Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 1992; 12: 4468-88.

21. Shook BL, Schlag-Rey M, Schlag J. Primate supplementary eye field. II. comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol 1991; 307: 562-83.

22. Groenewegen HJ, Room P, Witter MP, Lohman AH. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 1982; 7: 977-96.

23. Jenkins IH, Brooks DJ, Nixon PD, et al. Motor sequence learning: a study with positron emission tomography. J Neurosci 1994; 14: 3775-90.

24. Jueptner M, Frith CD, Brooks DJ, et al. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 1997; 77: 1325-37.

25. Bucher SF, Seelos KC, Stehling M, et al. High resolution activation mapping of basal ganglia with functional magnetic resonance imaging. Neurology 1995; 45: 180-2.

26. Lehéricy S, Van De Moortele P-F, Lobel E, et al. Somatotopical organization of striatal activation during finger and toe movement: A 3T fMRI Study. Ann Neurol 1998; 44: 398-404.

27. Maillard L, Ishii K, Bushara K, et al. Mapping of the basal ganglia. fMRI evidence for somatotopic representation of face, hand, and foot. Neurology 2000; 55: 377-83.

28. Scholz VH, Flaherty AW, Kraft E, et al. Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. BrainRes 2000; 879: 204-15.

29. Wiesendanger M, Rouiller EM, Kazennikov O, Perrig S. Is the supplementary motor area a bilaterally organized system? Adv Neurol 1996; 70: 85-93.

30. McGuire PK, Bates JF, Goldman-Rakic PS. Interhemispheric integration: II. Symmetry and convergence of the corticostriatal projections of the left and right principal sulcus (PS) and the left and the right supplementary motor area (SMA) of the rhesus monkey. Cereb Cortex 1991; 1: 408-17.

31. Sadato N, Ibanez V, Campbell G, et al. Frequency-dependent changes of regional cerebral blood flow during finger movements: functional MRI compared to PET. J Cereb Blood Flow Metab 1997; 17: 670-9.

32. Schlaug G, Sanes JN, Thangaraj V, et al. Cerebral activation covaries with movement rate. Neuroreport 1996; 7: 879-83.

33. Rao SM, Bandettini PA, Binder JR, et al. Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 1996; 16: 1250-4.

34. Jenkins IH, Passingham RE, Brooks DJ. The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci 1997; 151: 195-205.

35. Waldvogel D, van Gelderen P, Ishii K, Hallett M. The effect of movement amplitude on activation in functional magnetic resonance imaging studies. J Cereb Blood Flow Metab 1999; 19: 1209-12.

36. Dettmers C, Fink GR, Lemon RN, et al. Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 1995; 74: 802-15.

37. Crutcher MD, Alexander GE. Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. J Neurophysiol 1990; 64: 151-63.

38. Deecke L. Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 1987; 132: 231-50.

39. Kawashima R, Roland PE, O'Sullivan BT. Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci 1994; 14: 3462-74.

40. Jahanshahi M, Jenkins IH, Brown RG, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement- related potentials in normal and Parkinson's disease subjects. Brain 1995; 118: 913-33.

41. Stephan KM, Fink GR, Passingham RE, et al. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 1995; 73: 373-86.

42. Deiber MP, Ibanez V, Sadato N, Hallett M. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 1996; 75: 233-47.

43. Krams M, Rushworth MF, Deiber MP, et al. The preparation, execution and suppression of copied movements in the human brain. Exp BrainRes 1998; 120: 386-98.

44. Horwitz B, Deiber MP, Ibanez V, et al. Correlations between reaction time and cerebral blood flow during motor preparation. Neuroimage 2000; 12: 434-41.

45. Jenkins IH, Jahanshahi M, Jueptner M, et al. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 2000; 123: 1216-28.

46. Humberstone M, Sawle GV, Clare S, et al. Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann Neurol 1997; 42: 632-7.

47. Toni I, Schluter ND, Josephs O, et al. Signal-, set- and movement- related activity in the human brain: an event-related fMRI study. Cereb Cortex 1999; 9: 35-49.

48. Gerardin E, Lehéricy S, Poline JB, et al. Different representations of movement selection, preparation and execution in the striatum: an event-related fMRI study. Neuroimage 2001; 13: S1169.

49. Toni I, Passingham RE. Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp BrainRes 1999; 127: 19-32.

50. Sakai K, Hikosaka O, Miyauchi S, Sasaki Y, Fujimaki N, PŸtz B. Presupplementary motor area activation during sequence learning reflects visuomotor association. J Neurosci 1999; 19: 1-6.

51. Hikosaka O, Nakahara H, Rand MJ, et al. Parallel neural networks for learning sequential procedures. Trends Neurosci 1999; 22: 464-71.

52. Deiber MP, Passingham RE, Colebatch JG, et al. Cortical areas and the selection of movement: a study with positron emission tomography. Exp BrainRes 1991; 84: 393-402.

53. Grafton ST, Mazziotta JC, Presty S, et al. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 1992; 12: 2542-8.

54. Colebatch JG, Deiber MP, Passingham RE, et al. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 1991; 65: 1392-401.

55. Playford ED, Jenkins IH, Passingham RE, et al. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992; 32: 151-61.

56. Schultz W, Romo R. Role of the primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp BrainRes 1992; 91: 363-84.

57. Romo R, Schultz W. Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movementrelated activity in the anterior striatum. Exp BrainRes 1992; 91: 385-95.

58. Romo R, Scarnati E, Schultz W. Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area. Exp Brain Res 1992; 91: 396-407.

59. Frith CD, Friston K, Liddle PF, Frackowiak RS. Willed action and the prefrontal cortex in man: a study with PET. Proc R Soc Lond B Biol Sci 1991; 244: 241-6.

60. Pochon JB, Levy R, Poline JB, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex 2001; 11: 260-6.

61. Toni I, Krams M, Turner R, Passingham RE. The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 1998; 8: 50-61.

62. Rauch SL, Whalen PJ, Savage CR, et al. Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Hum BrainMapp 1997; 5: 124-32.

63. Hazeltine E, Grafton ST, Ivry R. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 1997; 120: 123-40.

64. Gerardin E, Sirigu A, Lehéricy S, et al. Dissociable neural networks for real and imagined hand movements. Cereb Cortex 2000; 10: 1093-104.

65. Decety J, Perani D, Jeannerod M, et al. Mapping motor representations with positron emission tomography. Nature 1994; 371: 600-2.

66. Owen AM, Evans AC, Petrides M. Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 1996; 6: 31-8.

67. Smith EE, Jonides J, Koeppe RA. Dissociating verbal and spatial working memory using PET. Cereb Cortex 1996; 6: 11-20.

68. Courtney SM, Ungerleider LG, Keil K, Haxby JV. Transient and sustained activity in a distributed neural system for human working memory. Nature 1997; 386: 608-11.

69. Cohen JD, Perlstein WM, Braver TS, et al. Temporal dynamics of brain activation during a working memory task. Nature 1997; 386: 604-8.

70. Pochon JB, Levy R, Fossati P, et al. The neural system that bridges Reward and Cognition in humans: an fRMI study. Proc Natl Acad Sci 2002; 99: 5669-74.

71. Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE. The prefrontal cortex: response selection or maintenance within working memory? Science 2000 2; 288: 1656-60.

72. Baker SC, Rogers RD, Owen AM, et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 1996; 34: 515-26.

73. Morris RG, Ahmed S, Syed GM, Toone BK. Neural correlates of planning ability: frontal lobe activation during the Tower of London test. Neuropsychologia 1993; 31: 1367-78.

74. Owen AM, Doyon J, Petrides M, Evans AC. Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 1996; 8: 353-64.

75. Gerardin E, Lehéricy S, Pochon JB, et al. Foot, hand, face, and eye representation in the human striatum. Cereb Cortex, in press.

76. Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 1989; 61: 780-98.

77. Schultz W. Multiple reward signals in the brain. Nat Rev Neurosci 2000; 1: 199-207.

78. Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 1992; 67: 145-63.

79. Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 2000; 12: 20-7.

80. Knutson B, Fong GW, Adams CM, et al. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12: 3683-7.

81. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 2001; 30: 619-39.

82. Pagnoni G, Zink CF, Montague PR, Berns GS. Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 2002; 5: 97-8.

83. Berns GS, McClure SM, Pagnoni G, Montague PR. Predictability modulates human brain response to reward. J Neurosci 2001; 21: 2793-8.

84. Berns GS, Cohen JD, Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science 1997; 276: 1272-5.

85. Koepp MJ, Gunn RN, Lawrence AD, et al. Evidence for striatal dopamine release during a video game. Nature 1998; 393: 266-8.

86. Dupont S, Semah F, Baulac M, Samson Y. The underlying pathophysiology of ictal dystonia in temporal lobe epilepsy: an FDG-PET study. Neurology 1998; 51: 1289-92.