John Libbey Eurotext

Virologie

Les virus au service de l’écologie marine Volume 21, numéro 4, Juillet-Août 2017

  • [1] Fischer M.G., Allen M.J., Wilson W.H. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A. 2010;107:19508-19513.
  • [2] Colson P., Gimenez G., Boyer M. The giant virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of life. PLoS One. 2011;6:1-11. Cafeteria roenbergensis
  • [3] Spencer R. A marine bacteriophage. Nature. 1955;175:690-691.
  • [4] Bergh O., Børsheim K.Y., Bratbak G. High abundance of viruses found in aquatic environments. Nature. 1989;340:467-468.
  • [5] Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl Environ Microbiol. 1991;57:2731-2734.
  • [6] Wommack K.E., Colwell R.R. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69-114.
  • [7] Holmfeldt K., Solonenko N., Shah M. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc Natl Acad Sci U S A. 2013;110:12798-12803.
  • [8] Holmfeldt K., Howard-Varona C., Solonenko N. Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. Environ Microbiol. 2014;16:2501-2513.
  • [9] Moebus K., Nattkemper H. Taxonomic investigations of bacteriophage sensitive bacteria isolated from marine waters. Helgol Meeresunters. 1983;36:357-373.
  • [10] Sullivan M.B., Waterbury J.B., Chisholm S.W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047-1051.
  • [11] Sullivan M.B., Coleman M.L., Weigele P. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:790-806.
  • [12] Sullivan M.B., Krastins B., Hughes J.L. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935-2951.
  • [13] Brussaard C.P.D., Martínez J. Algal bloom viruses. Plant Viruses. 2008;2:1-13.
  • [14] Short S.M. The ecology of viruses that infect eukaryotic algae. Environ Microbiol. 2012;14:2253-2271.
  • [15] Tomaru Y., Toyoda K., Kimura K. Marine diatom viruses and their hosts: resistance mechanisms and population dynamics. Perspect Phycol. 2015;2:69-81.
  • [16] Geslin C., Le Romancer M., Gaillard M. Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents. Res Microbiol. 2003;154:303-307.
  • [17] Gorlas A., Koonin E.V., Bienvenu N. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol. 2012;14:503-516.
  • [18] Arslan D., Legendre M., Seltzer V. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A. 2011;108:17486-17491.
  • [19] Garza D.R., Suttle C.A. Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities. Aquat Microb Ecol. 1995;9:203-210.
  • [20] La Scola B., Desnues C., Pagnier I. The virophage as a unique parasite of the giant mimivirus. Nature. 2008;455:100-104.
  • [21] Bekliz M., Colson P., La Scola B. The expanding family of virophages. Viruses. 2016;8:1-15.
  • [22] Zhou J., Sun D., Childers A. Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J Virol. 2015;89:1278-1285.
  • [23] Gong C., Zhang W., Zhou X. Novel virophages discovered in a freshwater lake in China. Front Microbiol. 2016;7:1-11.
  • [24] Zhou J., Zhang W., Yan S. Diversity of virophages in metagenomic data sets. J Virol. 2013;87:4225-4236.
  • [25] Zhang W., Zhou J., Liu T. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep. 2015;5:15131.
  • [26] Suttle C.A. The significance of viruses to mortlaity in aquatic microbial communities. Microbiol Ecol. 1994;28:237-243.
  • [27] Weinbauer M.G. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127-181.
  • [28] Winter C., Herndl G.J., Weinbauer M.G. Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat Microb Ecol. 2004;35:207-216.
  • [29] Danovaro R., Dell’Anno A., Corinaldesi C. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature. 2008;454:1084-1087.
  • [30] Bratbak G., Egge J.K., Heldal M. Viral mortality of the marine alga (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser. 1993;93:39-48. Emiliania huxleyi
  • [31] Brussaard C., Kempers R., Kop A. Virus-like particles in a summer bloom of in the North Sea. Aquat Microb Ecol. 1996;10:105-113. Emiliania huxleyi
  • [32] Baudoux A.-C., Noordeloos A.A.M., Verdhuis M.J.W. Virally induced mortality of during two spring blooms in temperate coastal waters. Aquat Microb Ecol. 2006;44:207-217. Phaeocystis globosa
  • [33] Brussaard C.P.D. Viral control of phytoplankton populations. J Eukaryot Microbiol. 2004;51:125-138.
  • [34] Baudoux A.C., Brussaard C.P.D. Characterization of different viruses infecting the marine harmful algal bloom species . Virology. 2005;341:80-90. Phaeocystis globosa
  • [35] Faruque S.M., Mekalanos J.J. Phage-bacterial interactions in the evolution of toxigenic . Virulence. 2012;3:556-565. Vibrio cholerae
  • [36] Thomas R., Grimsley N., Escande M.L. Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ Microbiol. 2011;13:1412-1420.
  • [37] Lossouarn J., Dupont S., Gorlas A. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents. Res Microbiol. 2015;166:742-752.
  • [38] Demory D., Arsenieff L., Simon N. Temperature is a key factor in Micromonas-virus interactions. ISME J. 2017;11:1-12.
  • [39] Angly F.E., Felts B., Breitbart M. The marine viromes of four oceanic regions. PLoS Biol. 2006;4:2121-2131.
  • [40] Zhao Y., Temperton B., Thrash J.C. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357-360.
  • [41] Kang I., Oh H.-M., Kang D. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci U S A. 2013;110:12343-12348.
  • [42] Mizuno C.M., Ghai R., Saghaï A. Genomes of abundant and widespread viruses from the deep ocean. MBio. 2016;7:1-9.
  • [43] Hurwitz B.L., Sullivan M.B. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:1-12.
  • [44] Sánchez-Paz A., Muhlia-Almazan A., Saborowski R. Marine viruses: the beneficial side of a threat. Appl Biochem Biotechnol. 2014;174:2368-2379.
  • [45] Soucy S.M., Huang J., Gogarten J.P. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16:472-482.
  • [46] Koonin E.V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000 Res. 2016;5:1805.
  • [47] Lang A.S., Zhaxybayeva O., Beatty J.T. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 2012;10:472-482.
  • [48] McDaniel L.D., Young E., Delaney J. High frequency of horizontal gene transfer in the oceans. Science. 2010;330:50.
  • [49] Jiang S.C., Paul J.H. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998;64:2780-2787.
  • [50] Paul J., Paul J.H., Sullivan M.B. Marine phage genomics. Comp Biochem Physiol. 2002;133:463-476.
  • [51] Popa O., Landan G., Dagan T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 2017;11:543-554.
  • [52] Blanc G., Gallot-Lavallée L., Maumus F. Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. Proc Natl Acad Sci U S A. 2015;112:E5318-E5326.
  • [53] Santini S., Jeudy S., Bartoli J. Genome of virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci U S A. 2013;110:10800-10805. Phaeocystis globosa
  • [54] Fischer M., Suttle C.A. A virophage at the origin of large DNA transposons. Science. 2011;332:231-234.
  • [55] Millard A.D., Zwirglmaier K., Downey M.J. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370-2387. Synechococcus
  • [56] Rohwer F., Segall A., Steward G. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr. 2000;45:408-418.
  • [57] Sullivan M.B., Huang K.H., Ignacio-Espinoza J.C. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035-3056.
  • [58] Thompson L.R. Auxiliary metabolic genes in viruses infecting marine cyanobacteria. 2010. pp. 1-293 (PhD diss, Massachusetts Inst Technol)
  • [59] Weigele P.R., Pope W.H., Pedulla M.L. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and . Environ Microbiol. 2007;9:1675-1695. Synechococcus
  • [60] Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425-448.
  • [61] Hurwitz B.L., U’Ren J.M. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161-168.
  • [62] Lindell D., Jaffe J.D., Johnson Z.I. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86-89.
  • [63] Clokie M.R.J., Mann N.H. Marine cyanophages and light. Environ Microbiol. 2006;8:2074-2082.
  • [64] Rosenwasser S., Ziv C., Van Creveld S.G. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 2016;24:821-832.
  • [65] Anantharaman K., Duhaime M.B., Breier J.A. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757-760.
  • [66] Wilson W.H., Schroeder D.C., Allen M.J. Complete genome sequence and lytic phase transcription profile of a coccolithovirus. Science. 2005;309:1090-1092.
  • [67] Monier A., Pagarete A., De Vargas C. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 2009;19:1441-1449.
  • [68] Rosenwasser S., Mausz M.A., Schatz D. Rewiring host lipid metabolism by large viruses determines the fate of , a bloom-forming alga in the ocean. Plant Cell. 2014;26:2689-2707. Emiliania huxleyi
  • [69] Pal C., Macia M.D., Oliver A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature. 2007;450:1079-1081.
  • [70] Weitz J.S., Hartman H., Levin S.A. Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci U S A. 2005;102:9535-9540.
  • [71] Paterson S., Vogwill T., Buckling A. Antagonistic coevolution accelerates molecular evolution. Nature. 2010;464:275-278.
  • [72] Buckling A., Rainey P.B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269:931-936.
  • [73] Stoddard L.I., Martiny J.B.H., Marston M.F. Selection and characterization of cyanophage resistance in marine strains. Appl Environ Microbiol. 2007;73:5516-5522. Synechococcus
  • [74] Marston M.F., Pierciey F.J., Shepard A. Rapid diversification of coevolving marine and a virus. Proc Natl Acad Sci U S A. 2012;109:4544-4549. Synechococcus
  • [75] Yau S., Hemon C., Derelle E. A viral immunity chromosome in the marine picoeukaryote, . PLoS Pathog. 2016;12:1-25. Ostreococcus tauri
  • [76] Frada M., Probert I., Allen M.J. The ‘Cheshire Cat’ escape strategy of the coccolithophore in response to viral infection. Proc Natl Acad Sci U S A. 2008;105:15944-15949. Emiliania huxleyi
  • [77] Wilhelm S.W., Suttle C.A. Viruses and nutrient cycles in the sea. Bioscience. 1999;49:781-788.
  • [78] Fuhrman J.A., Noble R.T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236-1242.
  • [79] Evans C., Archer S.D., Jacquet S. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol. 2003;30:207-219.
  • [80] Danovaro R., Corinaldesi C., Dell’Anno A. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35:993-1034.
  • [81] Martinez Martinez J., Schroeder D.C., Larsen A. Molecular dynamics of and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol. 2007;73:554-562. Emiliania huxleyi
  • [82] Brussaard C.P.D., Kuipers B., Veldhuis M.J.W. A mesocosm study of population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859-874. Phaeocystis globosa
  • [83] Tarutani K., Nagasaki K., Yamaguchi M. Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton: . Appl Environ Microbiol. 2000;66:4916-4920. Heterosigma akashiwo
  • [84] Nagasaki K., Ando M., Itakura S. Viral mortality in the final stage of (Raphidophyceae) red tide. J Plankton Res. 1994;16:1595-1599. Heterosigma akashiwo
  • [85] Mojica K.D.A., Huisman J., Wilhelm S.W. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:1-14.
  • [86] Payet J.P., Suttle C.A. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol Oceanogr. 2013;58:465-474.
  • [87] Brum J.R., Hurwitz B.L., Schofield O. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2015;10:1-13.
  • [88] Paul J.H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579-589.
  • [89] Kendrick B.J., Ditullio G.R., Cyronak T.J. Temperature-induced viral resistance in (Prymnesiophyceae). PLoS One. 2014;9:1-14. Emiliania huxleyi
  • [90] Thingstad T.F., Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol. 1997;13:19-27.
  • [91] Thingstad T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320-1328.
  • [92] Waterbury J., Valois F. Resistance to co-occurring phages enables marine communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393-3399. Synechococcus
  • [93] Lu J., Chen F., Hodson R.E. Distribution isolation, host specificity, and diversity of cyanophages infecting marine spp. in river estuaries. Appl Environ Microbiol. 2001;67:3285-3290. Synechococcus
  • [94] Suttle C.A., Chan A.M., Sutile C.A. Dynamics and distribution of cyanophages and their effect on marine spp. Appl Environ Microbiol. 1994;60:3167-3174. Synechococcus
  • [95] Yau S., Lauro F.M., DeMaere M.Z. Virophage control of antarctic algal host-virus dynamics. Proc Natl Acad Sci U S A. 2011;108:6163-6168.
  • [96] Fischer M.G., Hackl T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature. 2016;540:288-291.
  • [97] Hutchinson G.E. The paradox of the plankton. Am Nat. 1961;95:137-145.
  • [98] Weitz J.S., Stock C.A., Wilhelm S.W. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352-1364.
  • [99] Field C.B. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237-240.
  • [100] Hemsley V.S., Smyth T.J., Martin A.P. Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic. Environ Sci Technol. 2015;49:11612-11621.
  • [101] Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science. 1998;280:694-696.
  • [102] Jiao N., Zheng Q. The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol. 2011;77:7439-7444.
  • [103] Herndl G.J., Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718-724.
  • [104] Fuhrman J.A. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541-548.
  • [105] Suttle C.A. Viruses in the sea. Nature. 2005;437:356-361.
  • [106] Suttle C.A. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801-812.
  • [107] Middelboe M., Jørgensen N.O.G., Kroer N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl Environ Microbiol. 1996;62:1991-1997.
  • [108] Middelboe M., Jørgensen N.O.G. Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J Mar Biol Assoc U K. 2006;86:605-612.
  • [109] Lønborg C., Middelboe M., Brussaard C.P.D. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry. 2013;116:231-240.
  • [110] Fuhrman J. Bacterioplankton roles in cycling of organic matter: the microbial food web. New York: Plenum Press; 1992. pp. 361-83
  • [111] Brussaard C.P., Wilhelm S.W., Thingstad F. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2008;2:575.
  • [112] Gobler C.J., Hutchins D.A., Fisher N.S. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine. Limnol Oceanogr. 1997;42:1492-1504.
  • [113] Poorvin L., Rinta-Kanto J.M., Hutchins D.A. Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr. 2004;49:1734-1741.
  • [114] Mari X., Rassoulzadegan F., Brussaard C.P.D. Dynamics of transparent exopolymeric particles (TEP) production by under N-or P-limitation: a controlling factor of the retention/export balance. Harmful Algae. 2005;4:895-914. Phaeocystis globosa
  • [115] Uitz J., Claustre H., Gentili B. Phytoplankton class-specific primary production in the world's oceans: seasonal and interannual variability from satellite observations. Global Biogeochem Cycles. 2010;24:1-19.
  • [116] Weitz J.S., Wilhelm S.W. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:1-8.
  • [117] Guidi L., Chaffron S., Bittner L. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465-470.
  • [118] Puxty R.J., Millard A.D., Evans D.J. Viruses inhibit CO fixation in the most abundant phototrophs on earth. Curr Biol. 2016;26:1585-1589. 2
  • [119] Wommack K.E., Nasko D.J., Chopyk J. Counts and sequences, observations that continue to change our understanding of viruses in nature. J Microbiol. 2015;53:181-192.
  • [120] Follows M.J., Dutkiewicz S., Grant S. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315:1843-1846.
  • [121] Barton A.D., Dutkiewicz S., Glenn F. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509-1511.
  • [122] Steward G.F., Culley A.I., Mueller J.A. Are we missing half of the viruses in the ocean? ISME J. 2013;7:672-679.
  • [123] Efrony R., Atad I., Rosenberg E. Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol. 2009;58:139-145.
  • [124] Cohen Y., Joseph Pollock F., Rosenberg E. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen. 2013;2:64-74.
  • [125] Patel A., Noble R.T., Steele J.A. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR green I. Nat Protoc. 2007;2:269-276.
  • [126] Beasley A.R., Sigel M.M., Clem L.W. Latent infection in marine fish cell cultures. Proc Soc Exp Biol Med. 1966;121:1169-1174.
  • [127] Clem L.W., Sigel M.M., Friis R.R. An orphan virus isolated in marine fish cell tissue culture. Ann N Y Acad Sci. 1965;126:343-361.
  • [128] Hamblet F.E., Hill W.F.J., Akin E.W. Oysters and human viruses: effect of seawater turbidity on poliovirus uptake and elimination. Am J Epidemiol. 1969;89:562-571.
  • [129] Brussaard C.P.D., Marie D., Bratbak G. Flow cytometric detection of viruses. J Virol Methods. 2000;85:175-182.
  • [130] Marie D., Brussaard C.P.D., Thyrhaug R. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45-52.
  • [131] Lang A.S., Culley A.I., Suttle C.A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga . Virology. 2004;320:206-217. Heterosigma akashiwo
  • [132] Breitbart M., Salamon P., Andresen B. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A. 2002;99:14250-14255.
  • [133] Roux S., Brum J.R., Dutilh B.E. Ecogenomics and biogeochemical impacts of uncultivated globally abundant ocean viruses. Nature. 2016;537:689-693.
  • [134] Bálint M., Bahram M., Eren A.M. Millions of reads, thousands of taxa: microbial community structure and associations analyzed marker genes. FEMS Microbiol Rev. 2016;6:189-196. via
  • [135] Labonté J.M., Suttle C.A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 2013;7:2169-2177.
  • [136] Pomeroy L.R. The ocean's food web, a changing paradigm. Bioscience. 1974;24:499-504.
  • [137] Torrella F., Morita R.Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl Environ Microbiol. 1979;37:774-778.
  • [138] Moebus K. A method for the detection of bacteriophages from ocean water. Helgol Meeresunters. 1980;34:1-14.
  • [139] Bratbak G., Heldal M., Norland S. Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol. 1990;56:1400-1405.
  • [140] Noble R.T., Fuhrman J.A. Use of SYBR green I for rapid depifluorescence counts of marine virus and bacteria. Aquat Microb Ecol. 1998;14:113-118.
  • [141] Männistö R.H., Kivelä H.M., Paulin L. The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated. Virology. 1999;262:355-363.
  • [142] Mann N.H., Cook A., Bailey S. Bacterial photosynthesis genes in a virus. Nature. 2003;424:741-742.
  • [143] Culley A., Lang A., Suttle C.A. Metagenomic analysis of coastal RNA virus communities. Science. 2006;312:1795-1798.