John Libbey Eurotext

Environnement, Risques & Santé

Évaluation toxicologique des nanomatériaux d’oxydes métalliques : quelle place actuelle pour la modélisation « structure-activité » ? Volume 15, numéro 6, Novembre-Décembre 2016

  • [1] AFNOR. ISO/TR 13014 : Directives relatives à la caractérisation physico-chimique des nano-objets manufacturés soumis aux essais toxicologiques. La Plaine Saint-Denis: AFNOR; 2012.
  • [2] Chen Z., Wang Y., Ba T. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett. 2014;226:314-319. 3
  • [3] Pathakoti K., Huang M.J., Watts J.D., He X., Hwang H.M. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J Photochem Photobiol B. 2014;130:234-240.
  • [4] Bakhtyari N.G., Rasulev B., Leszczynski J., Benfenati E., Cronin M. Genotoxicity of metal oxide nanoparticles : a new predictive (Q)SAR model. Environmental and Molecular Mutagenesis. 2013;54:48.
  • [5] Winkler D.A., Mombelli E., Pietroiusti A. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology. 2013;313:15-23. 1
  • [6] Fourches D., Pu D., Tassa C. Quantitative nanostructure-activity relationship modeling. ACS Nano. 2010;4:5703-5712. 10
  • [7] Vance M.E., Kuiken T., Vejerano E.P. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769-1780.
  • [8] Ministère de l’écologie du développement durable et de l’énergie. Éléments issus des déclarations des substances à l’état nanoparticulaire. 2014.
  • [9] Luque-Garcia J.L., Sanchez-Díaz R., Lopez-Heras I., Camara C., Martin P. Bioanalytical strategies for in-vitro and in-vivo evaluation of the toxicity induced by metallic nanoparticles. TrAC Trends in Analytical Chemistry. 2013;43:254-268.
  • [10] Clark K.A., White R.H., Silbergeld E.K. Predictive models for nanotoxicology: current challenges and future opportunities. Regulatory Toxicology and Pharmacology. 2011;59:361-363. 3
  • [11] OCDE. Guidance document on the validation of (quantitative)structure-activity relationships (Q)SAR models, in Testing and Assessment. Paris: OCDE; 2007.
  • [12] Oksel C., Ma C.Y., Liu J.J., Wilkins T., Wang X.Z. (Q)SAR modelling of nanomaterial toxicity: a critical review. Particuology. 2015;21:1-19.
  • [13] Shaw S.Y., Westly E.C., Pittet M.J., Subramanian A., Schreiber S.L., Weissleder R. Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci USA. 2008;105:7387-7392. 21
  • [14] Ehret J., Vijver M., Peijnenburg W. The application of QSAR approaches to nanoparticles. Altern Lab Anim. 2014;42:43-50. 1
  • [15] Epa V.C., Burden F.R., Tassa C., Weissleder R., Shaw S., Winkler D.A. Modeling biological activities of nanoparticles. Nano Lett. 2012;12:5808-5812. 11
  • [16] Sayes C., Ivanov I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal. 2010;30:1723-1734. 11
  • [17] Toropova A.P., Toropov A.A., Benfenati E., Puzyn T., Leszczynska D., Leszczynski J. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles. Ecotoxicol Environ Saf. 2014;108:203-209.
  • [18] Puzyn T., Rasulev B., Gajewicz A. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011;6:175-178. 3
  • [19] Kar S., Gajewicz A., Puzyn T., Roy K., Leszczynski J. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicol Environ Saf. 2014;107:162-169.
  • [20] Toropov A.A., Toropova A.P., Benfenati E. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere. 2012;89:1098-1102. 9
  • [21] OCDE. Guidance manual for the testing of manufactured nanomaterials : OECD's sponsorship programme, First Revision. Paris: OCDE; 2010.
  • [22] Puzyn T., Leszczynska D., Leszczynski J. Toward the development of “nano-QSARs”: advances and challenges. Small. 2009;5:2494-2509. 22
  • [23] Fourches D., Pu D., Tropsha A. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen. 2011;14:217-225. 3
  • [24] Liu R., Rallo R., George S. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small. 2011;7:1118-1126. 8
  • [25] Liu R., Zhang H.Y., Ji Z.X. Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale. 2013;5:5644-5653. 12
  • [26] Toropova A.P., Toropov A.A., Rallo R., Leszczynska D., Leszczynski J. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol Environ Saf. 2015;112:39-45.
  • [27] Oksel C., Ma C.Y., Wang X.Z. Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials. Procedia Engineering. 2015;102:1500-1510. 0
  • [28] Richarz A.-N., Madden J.C., Marchese Robinson R.L. Development of computational models for the prediction of the toxicity of nanomaterials. Perspectives in Science. 2015;3:27-29. 1-4
  • [29] EMGS. Abstracts of the environmental mutagen society 44th annual meeting. September 21-25, 2013. Monterey, California, USA. Environ Mol Mutagen. 2013;54:S13-59. Suppl 1
  • [30] Burello E., Worth A. Computational nanotoxicology: predicting toxicity of nanoparticles. Nat Nanotechnol. 2011;6:138-139. 3
  • [31] Tantra R., Oksel C., Puzyn T. Nano(Q)SAR: Challenges, pitfalls and perspectives. Nanotoxicology. 20141-7.
  • [32] Gajewicz A., Rasulev B., Dinadayalane T.C. Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews. 2012;64:1663-1693. 15
  • [33] Jomini S., Labille J., Bauda P., Pagnout C. Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO(2) nanoparticles and byproducts from a sunscreen TiO(2)-based nanocomposite. Toxicol Lett. 2012;215:54-61. 1
  • [34] OCDE. Genotoxicity of manufactured nanomaterials : Report of the OCDE expert meeting, in Safety of manufactured nanomaterials. Paris: OCDE; 2014.