John Libbey Eurotext

European Journal of Dermatology

MicroRNA in skin diseases Volume 27, numéro 4, July-August 2017

  • [1] Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143-159.
  • [2] Lauressergues D., Couzigou J.M., Clemente H.S. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520:90-93.
  • [3] Cheng C.J., Bahal R., Babar I.A. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518:107-110.
  • [4] Wang H., Syrovets T., Kess D. Targeting NF-kappa B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. J Immunol. 2009;183:4755-4763.
  • [5] Xu N., Meisgen F., Butler L.M. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J Immunol. 2013;190:678-688.
  • [6] Yan S., Xu Z., Lou F. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652.
  • [7] Joyce C.E., Zhou X., Xia J. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet. 2011;20:4025-4040.
  • [8] Peng H., Kaplan N., Hamanaka R.B. MicroRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A. 2012;109:14030-14034.
  • [9] Xia J., Zhang W. MicroRNAs in normal and psoriatic skin. Physiol Genomics. 2014;46:113-122.
  • [10] Zhang Z., Li Z., Gao C. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358-1366.
  • [11] Han M., Liu M., Wang Y. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem. 2012;363:427-436.
  • [12] Meisgen F., Xu N., Wei T. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol. 2012;4:312-314.
  • [13] Gu X., Nylander E., Coates P.J., Nylander K. Effect of narrow-band ultraviolet B phototherapy on p63 and microRNA (miR-21 and miR-125b) expression in psoriatic epidermis. Acta Derm Venereol. 2011;91:392-397.
  • [14] Hou L., Bowman L., Meighan T.G., Pratheeshkumar P., Shi X., Ding M. Induction of miR-21-PDCD4 signaling by UVB in JB6 cells involves ROS-mediated MAPK pathways. Exp Toxicol Pathol. 2013;65:1145-1148.
  • [15] Killeen M.E., Ferris L., Kupetsky E.A., Falo LJr, Mathers A.R. Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol. 2013;190:4324-4336.
  • [16] Xu N., Brodin P., Wei T. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol. 2011;131:1521-1529.
  • [17] Kim S.W., Ramasamy K., Bouamar H. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A. 2012;109:7865-7870.
  • [18] Kim J.K., Jang S.W., Suk K., Lee W.H. Fascin regulates TLR4/PKC-mediated translational activation through miR-155 and miR-125b, which targets the 3’ untranslated region of TNF-α mRNA. Immunol Invest. 2015;44:309-320.
  • [19] Fu D., Yu W., Li M. MicroRNA-138 regulates the balance of Th1/Th2 via targeting RUNX3 in psoriasis. Immunol Lett. 2015;166:55-62.
  • [20] Zhao M., Wang L.T., Liang G.P. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol. 2014;150:22-30.
  • [21] Løvendorf M.B., Mitsui H., Zibert J.R. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp Dermatol. 2015;24:187-193.
  • [22] Løvendorf M.B., Zibert J.R., Gyldenløve M., Røpke M.A., Skov L. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci. 2014;75:133-139.
  • [23] Raaby L., Langkilde A., Kjellerup R.B. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br J Dermatol. 2015;173:436-447.
  • [24] Pivarcsi A., Meisgen F., Xu N., Ståhle M., Sonkoly E. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. Br J Dermatol. 2013;169:563-570.
  • [25] Yao R., Ma Y., Du Y. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome. Cell Mol Immunol. 2011;8:486-495.
  • [26] Pathak S., Grillo A.R., Scarpa M. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med. 2015;47:e164.
  • [27] Gracias D.T., Stelekati E., Hope J.L. The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol. 2013;14:593-602.
  • [28] Sonkoly E., Janson P., Majuri M.L. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126:581-9.e1-20.
  • [29] Ciszak L., Frydecka I., Wolowiec D., Szteblich A., Kosmaczewska A. Patients with chronic lymphocytic leukaemia (CLL) differ in the pattern of CTLA-4 expression on CLL cells: the possible implications for immunotherapy with CTLA-4 blocking antibody. Tumour Biol. 2016;37:4143-4157.
  • [30] Sääf A., Kockum I., Wahlgren C.F. Are BIC (miR-155) polymorphisms associated with eczema susceptibility? Acta Derm Venereol. 2013;93:366-367.
  • [31] Egan P.J., Lawlor K.E., Alexander W.S., Wicks I.P. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest. 2003;111:915-924.
  • [32] Rebane A., Runnel T., Aab A. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol. 2014;134:836-847.e11.
  • [33] Lv Y., Qi R., Xu J. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One. 2014;9:e115448.
  • [34] Vennegaard M.T., Bonefeld C.M., Hagedorn P.H. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis. 2012;67:298-305.
  • [35] Liu X., Hong Q., Wang Z., Yu Y., Zou X., Xu L. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells. Exp Biol Med (Maywood). 2016;241:265-272.
  • [36] Ying W., Tseng A., Chang R.C. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 2015;125:4149-4159.
  • [37] Su S., Zhao Q., He C. MiR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523.
  • [38] Fordham J.B., Naqvi A.R., Nares S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol. 2015;98:195-207.
  • [39] Pigatto P.D. Conctact dermatitis: some important topics. Eur Ann Allergy Clin Immunol. 2015;47:188-191.
  • [40] Gassling V., Hampe J., Açil Y., Braesen J.H., Wiltfang J., Häsler R. Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One. 2013;8:e63015.
  • [41] Momen-Heravi F., Trachtenberg A.J., Kuo W.P., Cheng Y.S. Genome-wide study of salivary microRNAs for detection of oral cancer. J Dent Res. 2014;93:86S-93S.
  • [42] Zhang W.Y., Liu W., Zhou Y.M., Shen X.M., Wang Y.F., Tang G.Y. Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis. 2012;18:265-270.
  • [43] Hu J.Y., Zhang J., Cui J.L. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine. 2013;62:141-145.
  • [44] Byun J.S., Hong S.H., Choi J.K., Jung J.K., Lee H.J. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients. Oral Dis. 2015;21:987-993.
  • [45] Chen J., Yao D., Li Y. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med. 2013;32:557-567.
  • [46] Dang J., Bian Y.Q., Sun J.Y. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2013;42:315-321.
  • [47] Zuo Y.L., Gong D.P., Li B.Z. The TF-miRNA Coregulation Network in Oral Lichen Planus. Biomed Res Int. 2015;2015:731264.
  • [48] Danielsson K., Ebrahimi M., Wahlin Y.B., Nylander K., Boldrup L. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol. 2012;26:1415-1419.
  • [49] Fukumoto I., Kikkawa N., Matsushita R. Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet. 2016;61:109-118.
  • [50] Arão T.C., Guimarães A.L., de Paula A.M., Gomes C.C., Gomez R.S. Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res. 2012;304:371-375.
  • [51] Terlou A., Santegoets L.A., van der Meijden W.I. An autoimmune phenotype in vulvar lichen sclerosus and lichen planus: a Th1 response and high levels of microRNA-155. J Invest Dermatol. 2012;132:658-666.
  • [52] Makino T., Jinnin M., Etoh M. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients. Eur J Dermatol. 2014;24:470-476.
  • [53] Sing T., Jinnin M., Yamane K. MicroRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford). 2012;9:1550-1556.
  • [54] Etoh M., Jinnin M., Makino K. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma. Arch Dermatol Res. 2013;305:9-15.
  • [55] Makino K., Jinnin M., Hirano A. The down-regulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol. 2013;190:3905-3915.
  • [56] Salazar G.A., Assassi S., Wu M., Hagan J., Mayes M.D. A3.34 The global microrna profile of skin in systemic sclerosis. Ann Rheum Dis. 2014;73:A55-A56.
  • [57] Raiko L., Siljamäki E., Mahoney M.G. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+)/Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol. 2012;21:586-591.
  • [58] Kurinna S., Schäfer M., Ostano P. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun. 2014;5:5099.
  • [59] Manca S., Magrelli A., Cialfi S. Oxidative stress activation of miR-125b is part of the molecular switch for Hailey-Hailey disease manifestation. Exp Dermatol. 2011;20:932-937.
  • [60] Lee M.J., Cha H.J., Lim K.M. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5α-dihydrotestosterone. Mol Med Rep. 2015;12:1205-1212.
  • [61] Goodarzi H.R., Abbasi A., Saffari M., Fazelzadeh Haghighi M., Tabei M.B., Noori Daloii M.R. Differential expression analysis of balding and nonbalding dermal papilla microRNAs in male pattern baldness with a microRNA amplification profiling method. Br J Dermatol. 2012;166:1010-1016.
  • [62] Zhang L., Stokes N., Polak L., Fuchs E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell. 2011;8:294-308.
  • [63] Chistiakov D.A., Sobenin I.A., Orekhov A.N., Bobryshev Y.V. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. 2015;2015:354517.
  • [64] Chen N., Wang J., Hu Y. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One. 2014;9:e95665.
  • [65] Masliah-Planchon J., Pasmant E., Luscan A. MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics. 2013;14:473.
  • [66] Weng Y., Chen Y., Chen J., Liu Y., Bao T. Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Med Oncol. 2013;30:531.
  • [67] Shi Y.L., Weiland M., Lim H.W., Mi Q.S., Zhou L. Serum miRNA expression profiles change in autoimmune vitiligo in mice. Exp Dermatol. 2014;23:140-142.
  • [68] Shi Q., Zhang W., Guo S. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death Differ. 2016;23:496-508.
  • [69] Lee A.Y., Kim N.H., Choi W.I., Youm Y.H. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol. 2005;124:976-983.
  • [70] Wang Y., Wang K., Liang J. Differential expression analysis of miRNA in peripheral blood mononuclear cells of patients with non-segmental vitiligo. J Dermatol. 2015;42:193-197.
  • [71] Cui T.T., Yi X.L., Zhang W.G. MiR-196a-2 rs11614913 polymorphism is associated with vitiligo by affecting heterodimeric molecular complexes of Tyr and Tyrp1. Arch Dermatol Res. 2015;307:683-692.
  • [72] Huang Y., Yi X., Jian Z. A single-nucleotide polymorphism of miR-196a-2 and vitiligo: an association study and functional analysis in a Han Chinese population. Pigment Cell Melanoma Res. 2013;26:338-347.
  • [73] Cimmino A., Calin G.A., Fabbri M. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944-13949.
  • [74] Ralfkiaer U., Hagedorn P.H., Bangsgaard N. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118:5891-5900.
  • [75] Ralfkiaer U., Lindahl L.M., Litman T. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res. 2014;34:7207-7217.
  • [76] Benner M.F., Ballabio E., van Kester M.S. Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides. Exp Dermatol. 2012;21:632-634.
  • [77] Sandoval J., Díaz-Lagares A., Salgado R. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol. 2015;135:1128-1137.
  • [78] McGirt L.Y., Adams C.M., Baerenwald D.A., Zwerner J.P., Zic J.A., Eischen C.M. MiR-223 regulates cell growth and targets proto-oncogenes in mycosis fungoides/cutaneous T-cell lymphoma. J Invest Dermatol. 2014;134:1101-1107.
  • [79] Ballabio E., Mitchell T., van Kester M.S. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116:1105-1113.
  • [80] Ito M., Teshima K., Ikeda S. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma. Blood. 2014;123:1499-1511.
  • [81] Xu N., Zhang L., Meisgen F. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem. 2012;287:29899-29908.
  • [82] Osada H., Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci. 2011;102:9-17.
  • [83] Gastaldi C., Bertero T., Xu N. MiR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis. 2014;35:1110-1120.
  • [84] Heffelfinger C., Ouyang Z., Engberg A. Correlation of global microRNA expression with basal cell carcinoma subtype. G3 (Bethesda). 2012;2:279-286.
  • [85] Bellare P., Ganem D. Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe. 2009;6:570-575.
  • [86] Lu F., Stedman W., Yousef M., Renne R., Lieberman P.M. Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol. 2010;84:2697-2706.
  • [87] Lei X., Bai Z., Ye F. Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol. 2010;12:193-199.
  • [88] Ning M.S., Kim A.S., Prasad N., Levy S.E., Zhang H., Andl T. Characterization of the Merkel cell carcinoma miRNome. J Skin Cancer. 2014;2014:289548.
  • [89] Veija T., Sahi H., Koljonen V., Bohling T., Knuutila S., Mosakhani N. miRNA-34a underexpressed in Merkel cell polyomavirus-negative Merkel cell carcinoma. Virchows Arch. 2015;466:289-295.
  • [90] Xie H., Lee L., Caramuta S. MicroRNA expression patterns related to Merkel cell polyomavirus infection in human Merkel cell carcinoma. J Invest Dermatol. 2014;134:507-517.
  • [91] Zhang L., Huang J., Yang N. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103:9136-9141.
  • [92] Philippidou D., Schmitt M., Moser D. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res. 2010;70:4163-4173.
  • [93] Leidinger P., Keller A., Borries A. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer. 2010;10:262.
  • [94] Chan E., Patel R., Nallur S. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle. 2011;10:1845-1852.
  • [95] Sand M., Skrygan M., Sand D. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351:85-98.
  • [96] Caramuta S., Egyházi S., Rodolfo M. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 2010;130:2062-2070.
  • [97] Saldanha G., Potter L., Shendge P. Plasma microRNA-21 is associated with tumor burden in cutaneous melanoma. J Invest Dermatol. 2013;133:1381-1384.
  • [98] Villaruz L.C., Huang G., Romkes M. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics. 2015;7:58.
  • [99] Tembe V., Schramm S.J., Stark M.S. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res. 2015;28:254-266.
  • [100] Margue C., Reinsbach S., Philippidou D. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget. 2015;6:12110-12127.
  • [101] Cohen R., Greenberg E., Nemlich Y., Schachter J., Markel G. MiR-17 regulates melanoma cell motility by inhibiting the translation of ETV1. Oncotarget. 2015;6:19006-19016.
  • [102] Dar A.A., Majid S., Rittsteuer C. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst. 2013;105:433-442.
  • [103] van Kempen L.C., van den Hurk K., Lazar V. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch. 2012;461:441-448.
  • [104] Nguyen T., Kuo C., Nicholl M.B. Down-regulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics. 2011;6:388-394.