JLE

Hématologie

MENU

The genomic landscape of adult B-cell precursor acute lymphoblastic leukaemia Article à paraître

  • [1] Inaba H., Greaves M., Mullighan C.G. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943-1955. 9881
  • [2] Yeoh E.-J., Ross M.E., Shurtleff S.A. Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133-143. 2
  • [3] Papaemmanuil E., Rapado I., Li Y. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46:116-125. 2
  • [4] Chiaretti S., Vitale A., Cazzaniga G. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013;98:1702-1710. 11
  • [5] de Labarthe A., Rousselot P., Huguet-Rigal F. Imatinib combined with induction or consolidation chemotherapy in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408-1413. de novo4
  • [6] Fielding A.K., Rowe J.M., Buck G. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843-850. 6
  • [7] Tanguy-Schmidt A., Rousselot P., Chalandon Y. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2013;19:150-155. 1
  • [8] Meyer C., Burmeister T., Gröger D. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32:273-284. 2
  • [9] Marks D.I., Moorman A.V., Chilton L. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98:945-952. 6
  • [10] Beldjord K., Chevret S., Asnafi V. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123:3739-3749. 24
  • [11] Charrin C., Thomas X., Ffrench M. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood. 2004;104:2444-2451. 8
  • [12] Harrison C.J., Moorman A.V., Broadfield Z.J. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125:552-559. 5
  • [13] Safavi S., Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood. 2017;129:420-423. 4
  • [14] Holmfeldt L., Wei L., Diaz-Flores E. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242-252. 3
  • [15] Mühlbacher V., Zenger M., Schnittger S. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93 %. Genes Chromosomes Cancer. 2014;53:524-536. 6
  • [16] Moorman A.V., Harrison C.J., Buck G.A.N. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109:3189-3197. 8
  • [17] Lafage-Pochitaloff M., Baranger L., Hunault M. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130:1832-1844. 16
  • [18] Paulsson K. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event. Mol Cell Oncol. 2016;3:e1064555. 1
  • [19] Onodera N., McCabe N.R., Nachman J.B. Hyperdiploidy arising from near-haploidy in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1992;4:331-336. 4
  • [20] Raynaud S., Mauvieux L., Cayuela J.M. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10:1529-1530. 9
  • [21] Jabber Al-Obaidi M.S., Martineau M., Bennett C.F. ETV6/AML1 fusion by FISH in adult acute lymphoblastic leukemia. Leukemia. 2002;16:669-674. 4
  • [22] Jeha S., Pei D., Raimondi S.C. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23:1406-1409. 8
  • [23] Garg R., Kantarjian H., Thomas D. Adults with acute lymphoblastic leukemia and translocation (1;19) abnormality have a favorable outcome with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and high-dose cytarabine chemotherapy. Cancer. 2009;115:2147-2154. 10
  • [24] Burmeister T., Gökbuget N., Schwartz S. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95:241-246. 2
  • [25] Fischer U., Forster M., Rinaldi A. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47:1020-1029. 9
  • [26] Russell L.J., Enshaei A., Jones L. IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J Clin Oncol. 2014;32:1453-1462. 14
  • [27] Akasaka T., Balasas T., Russell L.J. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2007;109:3451-3461. 8
  • [28] Grimaldi J.C., Meeker T.C. The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood. 1989;73:2081-2085. 8
  • [29] Meeker T.C., Hardy D., Willman C., Hogan T., Abrams J. Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood. 1990;76:285-289. 2
  • [30] Arber D.A., Orazi A., Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405. 20
  • [31] Roberts K.G., Li Y., Payne-Turner D. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005-1015. 11
  • [32] Harrison C.J. Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125:1383-1386. 9
  • [33] Fazio G., Daniele G., Cazzaniga V. Three novel fusion transcripts of the paired box 5 gene in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2015;100:e14-e17. 1
  • [34] Strehl S., König M., Dworzak M.N., Kalwak K., Haas O.A. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia. 2003;17:1121-1123. 6
  • [35] Coyaud E., Struski S., Prade N. Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood. 2010;115:3089-3097. 15
  • [36] Jamrog L., Chemin G., Fregona V. PAX5-ELN oncoprotein promotes multistep B-cell acute lymphoblastic leukemia in mice. Proc Natl Acad Sci U S A. 2018;115:10357-10362. 41
  • [37] Mullighan C.G., Goorha S., Radtke I. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758-764. 7137
  • [38] Kuiper R.P., Schoenmakers E.F.P.M., van Reijmersdal S.V. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia. 2007;21:1258-1266. 6
  • [39] Lindqvist C.M., Lundmark A., Nordlund J. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget. 2016;7:64071-64088. 39
  • [40] Meyer J.A., Wang J., Hogan L.E. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet. 2013;45:290-294. 3
  • [41] Dieck C.L., Tzoneva G., Forouhar F. Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell. 2018;34:136-147.e6. 1
  • [42] Mullighan C.G., Zhang J., Kasper L.H. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235-239. 7337
  • [43] Mullighan C.G., Miller C.B., Radtke I. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110-114. 7191
  • [44] Mullighan C.G., Su X., Zhang J. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470-480. 5
  • [45] Clappier E., Grardel N., Bakkus M. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia. 2015;29:2154-2161. 11
  • [46] Kobitzsch B., Gökbuget N., Schwartz S. Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia. Haematologica. 2017;102:1739-1747. 10
  • [47] Familiades J., Bousquet M., Lafage-Pochitaloff M. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia. 2009;23:1989-1998. 11
  • [48] Stengel A., Schnittger S., Weissmann S. TP53 mutations occur in 15.7 % of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood. 2014;124:251-258. 2
  • [49] Hof J., Krentz S., van Schewick C. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29:3185-3193. 23
  • [50] Irving J.A.E., Enshaei A., Parker C.A. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2016;128:911-922. 7
  • [51] Chiaretti S., Brugnoletti F., Tavolaro S. TP53 mutations are frequent in adult acute lymphoblastic leukemia cases negative for recurrent fusion genes and correlate with poor response to induction therapy. Haematologica. 2013;98:e59-61. 5
  • [52] Salmoiraghi S., Montalvo M.L.G., Ubiali G. Mutations of TP53 gene in adult acute lymphoblastic leukemia at diagnosis do not affect the achievement of hematologic response but correlate with early relapse and very poor survival. Haematologica. 2016;101:e245-248. 6
  • [53] Kanagal-Shamanna R., Jain P., Takahashi K. TP53 mutation does not confer a poor outcome in adult patients with acute lymphoblastic leukemia who are treated with frontline hyper-CVAD-based regimens. Cancer. 2017;123:3717-3724. 19
  • [54] Liang D.-C., Shih L.-Y., Fu J.-F. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950-956. 4
  • [55] Ryan S.L., Matheson E., Grossmann V. The role of the RAS pathway in iAMP21-ALL. Leukemia. 2016;30:1824-1831. 9
  • [56] Andersson A.K., Ma J., Wang J. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47:330-337. 4
  • [57] Irving J., Matheson E., Minto L. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124:3420-3430. 23
  • [58] Jones C.L., Gearheart C.M., Fosmire S. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 2015;126:2202-2212. 19
  • [59] Oshima K., Khiabanian H., da Silva-Almeida A.C. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2016;113:11306-11311. 40
  • [60] Malinowska-Ozdowy K., Frech C., Schönegger A. KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia. 2015;29:1656-1667. 8
  • [61] Chu S.H., Song E.J., Chabon J.R. Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Adv. 2018;2:2478-2490. 19
  • [62] Den Boer M.L., van Slegtenhorst M., De Menezes R.X. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125-134. 2
  • [63] Harvey R.C., Mullighan C.G., Wang X. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116:4874-4884. 23
  • [64] Roberts K.G., Morin R.D., Zhang J. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153. 2
  • [65] Roberts K.G., Gu Z., Payne-Turner D. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35:394-401. 4
  • [66] Jain N., Roberts K.G., Jabbour E. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129:572-581. 5
  • [67] Hunger S.P., Mullighan C.G. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125:3977-3987. 26
  • [68] Lengline E., Beldjord K., Dombret H., Soulier J., Boissel N., Clappier E. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98:e146-148. 11
  • [69] Yoda A., Yoda Y., Chiaretti S. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2010;107:252-257. 1
  • [70] Iacobucci I., Li Y., Roberts K.G. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell. 2016;29:186-200. 2
  • [71] Harvey R.C., Mullighan C.G., Chen I.-M. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115:5312-5321. 26
  • [72] Yasuda T., Tsuzuki S., Kawazu M. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48:569-574. 5
  • [73] Lilljebjörn H., Henningsson R., Hyrenius-Wittsten A. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.
  • [74] Zhang J., McCastlain K., Yoshihara H. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48:1481-1489. 12
  • [75] Clappier E., Auclerc M.F., Rapion J. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28:70-77. 1
  • [76] Zaliova M., Zimmermannova O., Dörge P. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia. 2015;29:1222. 5
  • [77] Hirabayashi S., Ohki K., Nakabayashi K. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102:118-129. 1
  • [78] Alexander T.B., Gu Z., Iacobucci I. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562:373-379. 7727
  • [79] Gu Z., Churchman M., Roberts K. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016;7:13331.
  • [80] Lilljebjörn H., Ågerstam H., Orsmark-Pietras C. RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib. Leukemia. 2014;28:977-979. 4
  • [81] Ohki K., Kiyokawa N., Saito Y. Clinical and molecular characteristics of MEF2D fusion-positive precursor B-cell acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica. 2019;104:128-137. 1
  • [82] Passet M., Boissel N., Sigaux F. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood. 2018;133:280-284. 3
  • [83] Liu W., Hu S., Konopleva M. De Novo MYC and BCL2 Double-hit B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) in Pediatric and Young Adult Patients Associated With Poor Prognosis. Pediatr Hematol Oncol. 2015;32:535-547. 8
  • [84] Zaliova M., Kotrova M., Bresolin S. ETV6/RUNX1-like acute lymphoblastic leukemia: A novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer. 2017;56:608-616. 8
  • [85] Caye A., Beldjord K., Mass-Malo K. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2013;98:597-601. 4
  • [86] Ruminy P., Marchand V., Buchbinder N. Multiplexed targeted sequencing of recurrent fusion genes in acute leukaemia. Leukemia. 2016;30:757-760. 3