JLE

Hématologie

MENU

L’immunothérapie : cellules T à récepteurs antigéniques chimériques, inhibiteurs de check-points et anticorps bispécifique Volume 26, numéro 1, Janvier-Février 2020

  • [1] Rezvani A.R., Storb R.F. Separation of graft--tumor effects from graft--host disease in allogeneic hematopoietic cell transplantation. J Autoimmun. 2008;30:172-179. vs.vs.
  • [2] Pardoll D.M. The blockade of immune check-points in cancer immunotherapy. Nat Rev Cancer. 2012;12:252-264.
  • [3] Ok C.Y., Young K.H. Checkpoint inhibitors in hematological malignancies. J Hematol Oncol. 2017;10:103.
  • [4] Younes A., Santoro A., Shipp M. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17:1283-1294.
  • [5] Costa F., Das R., Kini Bailur J. Checkpoint inhibition in myeloma: opportunities and challenges. Front Immunol. 2018;9:2204.
  • [6] Akinleye A., Rasool Z. Immune check-point inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12:92.
  • [7] Byun D.J., Wolchok J.D., Rosenberg L.M. Cancer immunotherapy – immune check-point blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195-207.
  • [8] van Hall T., André P., Horowitz A. Monalizumab: inhibiting the novel immune check-point NKG2A. J Immun Cancer. 2019;7:263.
  • [9] Yuraszeck T., Kasichayanula S., Benjamin J. Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment. Clin Pharmacol Therap. 2017;101:634-645.
  • [10] Krupka C., Kufer P., Kischel R. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356-365.
  • [11] Tai Y.-T., Anderson K.C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187-1199.
  • [12] Chabannon C., Bouabdallah R., Fürst S. CAR-T cells : lymphocytes exprimant un récepteur chimérique à l’antigène. Rev Med Interne. 2019;40:545-552. 18
  • [13] Neelapu S.S., Locke F.L., Bartlett N.L. Axicabtagène ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531-2544.
  • [14] Locke F.L., Ghobadi A., Jacobson C.A. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20:31-42.
  • [15] Maude S.L., Laetsch T.W., Buechner J. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439-448.
  • [16] Schuster S.J., Svoboda J., Chong E.A. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545-2554.
  • [17] Makita S., Imaizumi K., Kurosawa S. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:1-14.
  • [18] Raje N., Berdeja J., Lin Y. Anti-BCMA CAR T-Cell Therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726-1737.
  • [19] Zhao W.-H., Liu J., Wang B.-Y. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11:141.