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ABSTRACT – The human brain is increasingly seen as a dynamic neural sys-
tem, the function of which relies on a diverse set of connections between
brain regions. To assess these complex dynamical interactions, formalism
of complex networks was suggested as one of the most promising tools
to offer new insight into the brain’s structural and functional organiza-
tion, with a potential also for clinical implications. Irrespective of the brain
mapping technique, modern network approaches have revealed funda-
mental aspects of normal brain-network organization, such as small-world
and scale-free patterns, hierarchical modularity, and the presence of hubs.
Moreover, the utility of these approaches, to gain a better understanding
of neurological diseases, is of great interest. In the present contribution,
we first describe the basic network measures and how the brain networks
are constructed on the basis of brain activity data in order to introduce
clinical neurologists to this new theoretical paradigm. We then demon-
strate how network formalism can be used to detect changes in EEG-based
functional connectivity patterns in six paediatric patients with childhood
absence epilepsy. Notably, our results do not only indicate enhanced syn-
chronicity during epileptic episodes but also reveal specific spatial changes
in the electrical activity of the brain. We argue that the network-based evalu-
ation of functional brain networks can provide clinicians with more detailed
insight into the activity of a pathological brain and can also be regarded as
a support for objective diagnosis and treatment for various neurological
diseases.

Key words: electroencephalography (EEG), childhood absence epilepsy,
brain networks, functional connectivity, network neuroscience
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n the past two decades, the new science of complex
etworks has emerged as a powerful tool to charac-

erize the structure and function of various real-world
ystems with applications spanning from biological
o technological, and social sciences (Barabási, 2012;
occaletti et al., 2014; Gosak et al., 2018; Halu et al.,
019). Recent developments in the quantitative analysis
f complex networks have been rapidly translated also

o studies of brain network organization (Bullmore
nd Sporns, 2009; Park and Friston, 2013; Muldoon
nd Bassett, 2016; De Domenico et al., 2016). In this
ein, brain areas represent nodes of a network and
he edges stand either for structural connections or for
unctional associations. Structural brain networks usu-
lly describe anatomical parcellation of the brain and
inks signify physical connections between different
reas that are acquired from MRI or histological data
Gong et al., 2009). An even more popular concept is
he functional brain network, in which the signals from
ifferent regions or activity of sites are pairwise com-
ared and connected on the basis of some similarity
easures, such as cross-correlation (Reijneveld et al.,

007). Two nodes of the brain network are then con-
ected if their degree of synchronization is statistically
ignificant. Studies differ in the type of measured sig-
al (EEG, MEG, DTI, fMRI) and protocol to build up

unctional connectivity maps, but they all share the
ame idea that the extracted brain networks are sub-
equently analysed with tools from the realms of the
omplex network theory (Rubinov and Sporns, 2010).
n this manner, the brain can be reliably quantified
ith a small number of neurobiologically meaning-

ul and rather easily computable measures. The idea
f utilizing such advanced computational methods for
ssessing neurological data is nowadays established as
new discipline – network neuroscience (Bassett and
porns, 2017; Podobnik et al., 2017; Bassett et al., 2018).
hese methods have demonstrated that human brain
etworks display properties such as a small-world and
cale-free character, hierarchical modularity, and the
resence of hubs, which may directly facilitate cog-
itive processes (Bassett and Bullmore, 2016). Most

mportantly, an increasing amount of evidence sug-
ests that these characteristics are altered in disease
tates, thereby potentially providing important new
iomarkers for neurological and psychiatric disorders

Stam, 2014; Braun et al., 2015; Navas et al., 2015; Berolt,
019).
20

onstruction and analysis of complex
rain networks

network is a mathematical representation of a com-
lex system, composed of two basic components —
odes (vertices) and connections, or edges, between

m
I
o
w
T
h
c

hem. Construction of a functional connectivity brain
etwork consists of four main steps. First, one must
efine the network nodes, a process that depends
ainly on the technique used for recording the brain

ctivity. While in fMRI studies, parcellation into pre-
efined anatomical regions or a single-voxel approach

s typically applied, in EEG and MEG studies, the sur-
ace sensors or recording electrodes themselves can
e selected as nodes (Stanley et al., 2013; Wang et al.,
010). Alternatively, EEG- or MEG-based source recon-
truction techniques can be used to assess functional
onnectivity, however, this is computationally a very
hallenging task (Schoffelen and Gross, 2009; Lai et
l, 2018; Anastasiadou et al, 2019). Next, irrespective of
he measuring technique and the definition of nodes,

criterion for association between nodes must be
stablished. Different analytic techniques have been
eveloped to distinguish statistical interdependen-
ies between two or more time series of regional
ctivity varying from calculating the Pearson correla-
ion coefficient to more complex methods such as
uantification of synchronisation of frequencies, con-
istency of phase differences, and Granger causality
nalysis, among others (Stam and Van Straaten, 2012;
oben and Mohammad-Rezazadeh, 2015). From this,
n N-by-N association matrix is generated, compil-
ng pairwise association between all node pairs with
ach matrix cell representing the strength of the con-
ection between a given pair of nodes in a graph.
enerally, a threshold is applied, discarding all the

inks, the strength of which does not exceed a pre-
etermined value. This produces a binary adjacency
atrix, in which all the connections are considered

qual (Stam, 2014). The procedure for generation of the
unctional brain network based on measured signals is
chematically presented in figure 1.
rom here, network parameters can be calculated,
ffering an insight into the complex neuronal architec-

ure. The function of the brain is generally perceived
s having to meet two distinct, opposing demands.
irstly, it needs to be highly segregated which enables
ocal specialization for preforming specific tasks and
econdly, it must integrate information on the global
evel (Reijneveld et al., 2007). Several different mea-
ures are available for quantifying various aspects of
ptimal brain organisation. The most important ones
re described below.
he node degree is equal to the number of connec-
ions the node forms. It is the most fundamental
Epileptic Disord, Vol. 22, No. 5, October 2020

easure from which many others are derived upon.
n terms of functional brain networks, a higher degree
f a given node indicates a high level of synchronicity
ith many other nodes (Bullmore and Sporns, 2009).
he degree distribution of a healthy brain network is
eterogeneous and exhibits a small number of highly
onnected nodes and a high number of sparsely
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igure 1. Illustration of construction of a functional brain netwo
hat encompass the information on statistical dependencies betw

atrix, a connectivity matrix is established (C), which uniquely d

onnected nodes. The clustering coefficient, an
mportant parameter of local structure, is defined as

fraction of connections that are made between the
eighbours of a node. In brain networks, neighbours
f a node tend to be connected with each other as
ell, forming a cluster. In terms of function, a high

evel of clustering indicates high local efficiency in
nformation transfer and resilience to random attacks
nd subsequent node failures (Rubinov and Sporns,
010; Bullmore and Sporns, 2009). The shortest path
ength is the smallest number of edges that must
e traversed to get from one node to another (Van
traaten and Stam, 2013). Brain networks have a short
verage path length, again supporting efficient parallel
nformation transfer and global integration. Both of
he above-mentioned attributes found in brain net-
orks, the high level of clustering and short average
ath length are characteristics of the so-called “small
orld networks” (Watts and Strogatz, 1998; Bassett and
ullmore, 2016). As a form that is “in-between random
nd regular networks”, this type of organisation pro-
ides a balance between segregation and integration
f information processing, and seems to be optimal

or the function of many complex systems, including
he brain. Furthermore, small world organization
nables economic instalment of neuronal connec-
ions into the physically limited anatomical space of
he skull (Bassett and Bullmore, 2016). Investigating a
omplex system, one is often interested in unveiling
pileptic Disord, Vol. 22, No. 5, October 2020

he most pivotal elements responsible for the efficient
ommunication throughout the network. High degree
odes, which exhibit a small average distance to other
odes of the network, are considered hubs of the
etwork and their organization is associated with

nter-individual differences in cognitive performance
nd intelligence (Van Den Heuvel et al., 2009; Wang et

u
t
b
r
i
e
a

om EEG data. For selected EEG epochs (A), correlation matrices
EEG channels are calculated (B). By thresholding the correlation
s the functional brain network (D).

l., 2010). Hubs, however, at the same time, represent
eak spots since failure of a hub could have detrimen-

al consequence on network functionality (Rubinov
nd Sporns, 2010). Highly connected nodes tend to be
referentially connected to other high-degree nodes,

orming the so-called “rich club” found in structural
s well as functional networks (Grayson et al., 2014).
rain networks are divided into modules, formed by
subset of strongly interconnected nodes with few

onnections to the nodes in other modules (Meunier
t al., 2010). Large-scale modules, also called “com-
unities”, in the brain network belong to the major

unctional system of the brain involved in specific
eurological functions such as motor, somatosensory
r visual areas (Stam and Van Straaten, 2012). This mod-
lar organisation is hierarchical, as smaller modules
xist within larger modules (Sporns and Betzel, 2016).
schematic overview of network metrics used for the

haracterization of brain networks is shown in figure 2.

rain networks in neurological diseases

etwork organization in neurological disease almost
lways reflects a deviation from the optimal pattern,
hich is characterized by small-worldness, hierarchi-

al modularity, heterogeneity, and hub nodes that are
nterconnected in a rich club. The extent of network
hanges is often correlated with the extent of the
521

nderlying structural pathology and the severity of
he clinical symptoms. Already, brain networks have
een studied in a plethora of altered states in neu-
ological disorders, psychiatric states, and following
njury (Stam, 2014). For example, in Alzheimer’s dis-
ase, a neurodegenerative condition associated with
progressive loss of nerve cells, the functional brain
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Figure 2. Graphical representation of main network parameters.
Node degree is the number edges attached to a given node. For
“a” node (green), its node degree equals 4. Clustering coefficient
measures how well a node’s neighbours are connected to each
other. Node “b” (orange) has three neighbours (solid orange
lines), which could theoretically form three connections. Since
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that seizures are not disorganised or chaotic events,
he HUB node is not connected to the posterior neighbour of
ode b, only two connections out of a possible three are present

dotted lines). Node that the clustering coefficient of node b is
herefore 2/3. The length of the shortest path (L) between nodes
and d is drawn in pink. The violet node is considered a hub,

ince its degree is considerably higher than the average degree.

etworks lose their normal small-world structure, and
egress towards a less efficient regular-like archi-
ecture (Supekar et al., 2008; Jalili, 2016). Moreover,
revious studies indicate that hub nodes exhibit the
reatest beta amyloid depositions, which leads to the
onclusion that they are preferentially targeted by the
isease (Dai et al., 2015). Some network analysis stud-

es showed that network efficiency is also reduced
n Parkinson’s disease. In particular, Li et al. found
hat patients with Parkinson’s disease have decreased
onnections in the limbic/paralimbic/subcortical mod-
le and the cognitive control/attention module (Li et
l., 2017a). Moreover, in people with schizophrenia,
22

severe psychiatric disorder, the functional connec-
ome displays many alterations, including reductions
n putative measures of local processing, i.e. clustering
oefficients, as well as increases in global integration
etrics, reflected by shorter path-lengths. Conse-

uently, schizophrenic brains have a more random-like

b
s
h
a
p
O

rchitecture with a higher level of global integra-
ion and reduced local processing, and many of the
ymptoms of the disease are believed to originate
rom aberrantly connected networks or brain regions
Stephan et al., 2009). Other examples of studies on
rain connectivity patterns include investigations of
rain tumour patients, changes in brain networks in
ases of autism spectrum disorders, dementia, trau-
atic brain injury and recovery after stroke, to name

nly a few (Mears and Pollard, 2016). Of course, a lot
f attention has also been devoted to epileptic brain
ynamics. Epilepsy is the second most common neu-
ological disorder and in the last decade more and

ore studies have examined the rhythmic nature of
pileptic activity from a network perspective. In the
ext section, we briefly summarize the main findings
btained by innovative network-based approaches in
linical epilepsy research and demonstrate a concrete
xample of how the EEG-derived connectivity pattern
hanges in cases of epileptic episodes.

EG-based functional network analysis
n epilepsy

pilepsy is a common neurological disorder that
ffects approximately 1% of the world’s population. It
auses a hyperexcitable state of parts of the brain and is
haracterized by abnormal synchronized firing activity
f the neurons involved in a seizure (Van Straaten and
tam, 2013). Epilepsy is increasingly recognized as a dis-
rder of large-scale brain networks, as it is evident that
therwise healthy functional networks are recruited
uring epileptic activity. As seizures spread widely

hroughout the brain, presumably along pre-existing
eural pathways, patients lose control of certain func-

ions. These functions return when the seizure abates,
mplying involved brain regions are also responsible
or normal brain function. What has been less clear
s precisely which brain networks are involved and
he extent to which functional networks are perturbed
uring seizures, interictal activity, and at other times

Abbott et al., 2019).
tudies suggest that epileptic brain dynamics can be
escribed as originating from an underlying complex
pileptic network that links multiple brain regions
Van Diessen et al., 2013; Van Straaten and Stam,
013; Sargolzaei et al., 2015). Network analysis in both
rimary generalized and focal seizures has shown
Epileptic Disord, Vol. 22, No. 5, October 2020

ut in fact display an organised temporal and spatial
tructure (Braun et al., 2015; Abbott et al., 2019). What
appens with functional networks before, during and
fter a seizure might provide insight into the dynamic
rocesses involved (Van Straaten and Stam, 2013).
n the local level, focal epilepsy is characterized
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brain areas during epileptic activity (figure 4D). The
y a small brain area with abnormally increased
xcitability (such as the epileptogenic zone and the
rigin of high-frequency oscillations in temporal lobe
pilepsy), increased structural connectivity (possibly
he result of damage and rewiring) and one or more
ighly connected hubs. The local components may be
esponsible for the increased activity, synchronization
nd network regularity in the interictal state. Only if
he activation exceeds a critical threshold will activity
pread through general hub-like structures to the rest
f the network, and this then results in a generalized
eizure and a transiently hyper-regular functional net-
ork. If this process occurs repeatedly, long-distance

onnections and general hubs will become damaged,
esulting in a loss of long-distance connectivity and,
ventually, in cognitive dysfunction in patients with
pilepsy (Stam, 2014).
n the following, we demonstrate how the network
heory can be utilized for functional connectivity net-
orks in six children with childhood absence epilepsy

CAE) and show how the topological features of EEG-
erived networks change during epileptic episodes.
he children were five to eight years of age and had
ormal neurological state and development. Their
istory was typical of brief and frequent absences
ithout myoclonic jerks or any other type of seizure.
ll but one were treatment naïve at the time of EEG

ecording. One patient was already being treated
ith low-dose valproate for three days. Their EEGs

howed normal background brain activity interrupted
y periods of bilateral, symmetrical and synchronous
ischarges of 3-Hz generalised spike-and-wave (SW)
ischarges lasting between 4 and 18 seconds, mainly
rovoked by hyperventilation. Photic stimulation did
ot precipitate the seizures, nor subclinical discharges.
linically, the discharges corresponded to unrespon-

iveness with halting of over-breathing, spontaneous
ye opening and staring. There were no pronounced
utomatisms or myoclonia.
AE is an idiopathic, generalized epilepsy with a typ-

cal onset between 4-10 years of age (Kessler and
cginnis, 2019). While affected children were gen-

rally believed to have a normal neurological and
ognitive development, an increased risk of attention
eficit and subsequent academic difficulties has been
eported (Masur et al., 2013). Clinically, frequent short-
asting absence seizures with loss of awareness and
ossible oral automatism in particular are observed

Matricardi et al., 2014). EEG recordings show bilaterally
ynchronous and symmetrical discharges of rhythmic
pileptic Disord, Vol. 22, No. 5, October 2020

-Hz spike-wave complexes with sudden onset and ter-
ination (Matricardi et al., 2014).
e used EEG recordings from six patients using the

tandard international 10-20 electrode placement. The
cquisition was set to a unipolar mode, using the
verage of both auricular electrodes as reference sites.

n
c
c
w
n
d

Epileptic EEG-derived brain networks

he patients had absence seizures during the EEG
ecording. The raw data was exported from the Neuro-
ax EEG-1000 version 05-91 (Nihon Kohden, Shinjuku-
u, Japan) program used in the University Medical
entre Maribor in the ASCI format and subsequently
nalysed using custom-made Python scripts. The study
as performed with written consent obtained from

ubjects’ parents/caregivers and with the approval of
he Ethical committee of University Medical Centre

aribor (UKC-MB-KME-31/20). First, the EEG signals
ere band-pass filtered between 0.1 and 70.0 Hz.
ampling frequency was 512 Hz. The approximate
0-minute recordings were divided into 10-second
pochs and altogether 60 artefact-free epochs were
hosen for further analysis, 30 from normal seizure-
ree brain activity (control epochs; C) and 30 including
eneralized SW discharges (epileptic epochs; EPI), cor-
esponding clinically to absence seizures. In figure 3,
he procedure of EEG-functional network construction
s presented for a typical epoch with control (figure 3A)
nd a typical epoch with epileptic (figure 3B) activity.
o evaluate the synchronicity of the recorded signals,
e calculated the pairwise cross-correlation between

ll traces of a recording. Correlation matrices were
stablished for each epoch and thresholds were deter-
ined for control and epileptic epochs, respectively

figure 3C, D), based on the average value Ravg(i) and
tandard deviation RSD(i) of the correlation matrix for
he i-th epoch. In particular, the connectivity threshold
TH(i) for the i-th epoch was then determined as RTH(i)=
avg(i)+0.1·RSD(i). Finally, from the correlation matrices,

unctional connectivity networks were constructed
figure 3D, E). Comparison of both connectivity maps
ndicates denser networks during epileptic seizures.
n order to gain more precise insight into the topo-
ogical reorganization during the epileptic episodes
nd quantify the changes seen, some network metrics
ere calculated based on all 30 epochs in the given
roup. The box-plots in figure 4A, B, C show the average
orrelation coefficients, node degrees and cluster-
ng coefficients, respectively. Evidently, time series of
eizure-free periods (C) are much less synchronized
nd their corresponding networks are less dense and
lso less locally clustered when compared to networks
rom epileptic periods (EPI). This corroborates pre-
ious studies (Braun et al., 2015; Kramer and Cash,
012; Stam, 2014). Additionally, we evaluated the dif-
erences in node degrees of individual channels in
rder to gain some insight into the role of individual
523

ode degree of almost all channels increased signifi-
antly during epileptic activity with the exception of
hannels Fp2, O1, F8, T4 and T6, where the change
as insignificant, and channel O2, where the average
umber of connections decreased. For a more in-
epth investigation of epileptic activity initiation and
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igure 3. Functional brain networks from normal and epileptic b
ree brain activity (A), its corresponding correlation matrix (C) an
B), correlation matrix (D) and network (F) during the absence s
odes within the network (Fp: prefrontal; F: frontal; T: temporal;

ropagation, more advanced theoretical approaches
ith additional imaging techniques should be applied.
owever, despite the low spatial resolution of EEG

ecordings, this simple analysis of routinely available
EG recordings could offer crude insight into topo-
ogical changes of network dynamics during epileptic
ctivity. The ease of data acquisition and the simplicity
f the analysis makes this a promising approach that
ould help clinicians in their daily practice.

ultilayer epileptic brain networks

ecent research suggests that the standard network
pproach might be an over-simplification (Boccaletti
t al., 2014; Kivelä et al., 2014; Aleta and Moreno,
019). Namely, brain network construction is liable
o aggregation, averaging or disregarding a certain
24

ortion of the recorded data, mainly due to lim-
tations in recording equipment and mathematical
nalytical tools available. This inevitably leads to loss
f some crucial information about brain functional
onnectivity. An elegant solution to the problem
merged with the development of a multilayer net-
ork approach. A multilayer network can be thought

o
K
m
t
(
H
l

signals. Upper panels show a representative epoch for seizure-
in network (E). The lower panels display a representative epoch
e. Electrode position is characterised by the letters next to the
cipital; C: central).

f as a network of networks or a collection of inter-
onnected networks, i.e. each network offers a specific
ype of information about the brain and simultane-
usly acknowledges interlayer connectivity (Bassett
nd Sporns, 2017; De Domenico, 2017). Most often,
his formalism is used to present connectivity in dif-
erent frequency bands and variability of connectivity
ver different time scales or with respect to differ-
nt task execution, and enlighten the relationship
etween structural and functional connections of the
rain (Muldoon and Bassett, 2016; Gosak et al., 2018;
aiana and Muldoon, 2018). While the methodology

s still being developed and improved, its applica-
ion to brain functional data has already uncovered
everal interesting features, from the emergence of
ew interlayer hubs and their significance in neu-
opsychiatric disease to the importance of network
econfigurations during the resting state on a millisec-
Epileptic Disord, Vol. 22, No. 5, October 2020

nd scale, to name just a few (De Domenico et al., 2016;
abbara et al., 2017). Noteworthy, the utilization of
ultilayer network formalism is recently gaining atten-

ion also in the context of epileptic brain networks
Yu et al., 2020).
ere, we present an example of how the multi-

ayer concepts can be used to identify different kinds
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Figure 4. EEG-based brain network analysis. Average correlation coefficients (A), node degrees (B) and clustering coefficients (C) for
c r all c
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e ates
a < 0.0
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ontrol (orange) and epileptic (EPI) (green) epochs, combined fo
egrees of individual channels. The data shows combined avera
pileptic (green) (EPI) epochs from all six patients. The box indic
nd the whiskers indicate the minimal and maximal values. ***p
sed after pooling of data.

f changes in the brain’s collective activity during
pileptic episodes. For this purpose, we took all pos-
ible subsequent two-second epochs from epileptic
ctivity intervals from all patients, which lasted 12
econds or more, in order to have at least six subse-
uent epochs for interlayer analysis. In this manner,
e derived 11 series of six to eight epileptic epochs

rom four different patients and 11 equivalent series of
rtefact-free epochs of control activity from the same
our patients. Then, instead of averaging the extracted
orrelation matrices prior to the network construction,
e designed a network layer for each epoch separately,

s visualized in figure 5A. This enabled us to assess
he dynamic persistency of the functional connectivity
atterns and to investigate how this changes dur-
pileptic Disord, Vol. 22, No. 5, October 2020

ng epileptic activity compared to control conditions.
n particular, we calculated the Pearson correlation
oefficient between the �-th and �’-th network layer
Boccaletti et al., 2014) separately for the degree and
lustering interlayer correlations. To account for differ-
nt average degrees, we used a variable connectivity
hreshold and set the average degree to five in all

b
t
t
t
w
t
n

hannels and all analysed epochs from all six patients. (D) Node
lues for specific channels, pooled for control (orange) (C) and

the 25th and 75th percentile, the line indicates the median value
01, **p < 0.01, *p < 0.05, NS: not significant; Student’s t-test was

etwork layers. The matrices showing the degree of
nterlayer degree correlations between subsequent
etwork layers for the normal and epileptic episodes
re shown in figure 5B, C. Evidently, the correlations are
igher for networks corresponding to epileptic activ-

ty. In figure 5D, E, we show the average values for
nterlayer degree and clustering correlations for all 11
poch series for the normal and epileptic activity. Our
esults indicate that the EEG-derived brain network
uring the resting state is rather dynamic, whereas
uring the phases of absence seizures, the spatio-

emporal activity and the resulting network topology
re less variable. It should be noted that this is just a
emonstration on how the multilayer network formal-

sm can be used to quantify the collective activity of the
525

rain. Further studies will be necessary to explore how
he persistency of the network structure depends on
he epoch lengths, frequency bands, and, of course,
ype of epileptic seizure. The multilayer brain net-
ork approach also offers the potential to examine

he temporal evolution and dynamics of epileptic brain
etworks, which can lead to important implications for
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igure 5. A multilayer EEG-brain network analysis. (A) Layers of
pochs during an epileptic seizure episode. B, C) Interlayer co
enote the degree of similarity between layers, as indicated by th
egrees (D) and clustering coefficients (E) for the normal (oran
eries from four different patients. *p < 0.05.

tudying dynamic interactions during pre-ictal, ictal,
nd post-ictal periods (Yaffe et al., 2015), and by track-
ng subtle differences in network dynamics, possibly
lso to the detection of seizure onsets before they
ecome evident electrographically. Moreover, the pro-
osed formalism could provide a suitable theoretical

ramework to examine the evolution of brain networks
ver much longer periods of time, such as in EEG

ong-term monitoring or even to track the network
econfigurations of the same patient over years.

iscussion and conclusion
26

he EEG provides a fundamental tool in the pri-
ary diagnosis of epilepsy. It supports the notion

f characteristic temporal events, such as interictal
pikes associated with epileptic foci, and allows one
o distinguish between generalized and focal neuro-
hysiological correlates of epilepsy (Rosenow et al.,

w
t
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e
w

tional connectivity patterns extracted from seven subsequent
tion for the control (B) and epileptic (C) epochs. The colours
lour bar at the top. D, E) Average interlayer correlations for node
nd epileptic (green) epoch series for all 11 subsequent epoch

015). However, an interpretation of EEG recordings
ased solely on visual inspection is very subjective
nd prone to human error (Kirmani, 2013). In recent
ears, many efforts have been devoted to the develop-
ent of automated techniques (Cabrerizo et al., 2011).

he success of these methods depends heavily on the
umber of extracted parameters, and the functional
onnectivity networks have proven to be a valuable
epertoire that can significantly improve the precision
f such algorithms (Sargolzaei et al., 2015).
oreover, EEG-derived brain networks were not only

ound to be beneficial for the epilepsy diagnosis
ut also for its treatment. The ability to identify the
Epileptic Disord, Vol. 22, No. 5, October 2020

ork diagnostics has important clinical implications, as
his could improve the localisation of brain areas that
re appropriate for resection, revealing candidates for
urgical treatment among patients with drug-resistant
pilepsy (Braun et al., 2015). Wilke et al. studied
hether critical nodes could be identified in the
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etworks of patients undergoing epilepsy surgery
Wilke et al., 2011). Using EEG recordings, they found
hat a reduced number of seizures post-surgery was
ssociated with resection of brain regions that had
he highest betweenness centrality, also suggesting
hat critical network points are involved in either the
tart or spreading of seizures. In a prospective study
f individuals with both brain tumours and epilepsy
y van Dellen et al., the networks of individuals who
ecame seizure-free after surgery were more inte-
rated and showed higher centrality at follow-up than
he networks of patients who were not seizure-free
fter surgery (Van Dellen et al., 2014).
everal of the above-mentioned aspects of network
heory utilization have already been investigated in
AE – from the perspective of both structural as well
s functional connectivity. This research has provided
n important foundation for better understanding the
nitiation and spreading of absence seizures (Bear et
l., 2019). The structural networks in CAE show several
eviations from the optimal complex system organi-
ation, such as a decrease in small-worldness scalar
n the global level as well as decreased connectiv-

ty and efficiency of specific subnetworks (Xue et al.,
014; Qiu et al., 2017). Even more interesting are the
hanges in functional connectivity that confirm well
nown facts, such as the crucial role cortico-thalamic
onnectivity plays in CEA (Li et al., 2017b; Jiang et al.,
019). On the other hand, this new approach provides
ew insight into the development of seizures in CAE.

n contrast to the general perception of SW discharges
ccurring abruptly as bilaterally synchronous gener-
lized events, a detailed network approach to spatial
nd temporal profiles of seizure development showed
low-frequency frontal cortical source preceded by

n occipital source prior to the first SW discharges
Gupta et al., 2011). Critical hubs in focal cortical, sub-
ortical and cerebellar regions during seizures were
dentified, likely involved in seizure generation and/or

aintenance (Youssofzadeh et al., 2018). Investigations
evoted explicitly to the genesis of the generalised
yper-synchronous SW discharges during seizures
ave revealed that the transition of SW discharge pat-

ern from cortical local generation to generalization
oes not occur symmetrically, but is heterogeneous
nd exhibits dynamic time lags (Amor et al., 2009;
arrigiannis et al., 2018). This might be related to our
bservation that the changes in time-averaged net-
ork structure occurring during seizures were not
pileptic Disord, Vol. 22, No. 5, October 2020

ymmetric, as the node degree was increased more
rofoundly in the left hemisphere (see figure 4D).
urthermore, seizure termination was found to be a
radual process in which several cortical, particularly
rontal, areas are involved (Jiang et al., 2019). Notewor-
hy, a study that focused solely on background brain
ctivity in patients suffering from absence seizures

r
s
o
v
r
s
i

Epileptic EEG-derived brain networks

evealed that the alpha-band functional network pro-
les exhibit a higher inter-module connectivity in
omparison to those from healthy subjects, which
mplies the facilitation of emerging epileptic dis-
harges (Chavez et al., 2010).
espite an increasing amount of data describing

hanges in network parameters in patients with CEA,
he link between these parameters and clinical appli-
ation remains elusive. Currently, it would appear
hat altered functional connectivity may help in bet-
er understanding associated cognitive comorbidities
Bear et al., 2019). Functionally decreased connectivity
nd deactivation in default network mode were found
oth in conjunction with generalised SW activity and
uring the interictal period, and these abnormalities in

he default mode network could be related to cognitive
mpairment during seizures (Laufs et al., 2006; Luo et al.,
011). At the same time, new network measures, such
s the connection coefficient, are being developed to
etect and characterize ictal states in CEA which would
ltimately allow seizures to be detected automatically

Giudice et al., 2017). A potential for clinical use also
ecame clear when different focal areas with a high
egree of local connectivity identified in the narrow
re-ictal temporal window were found to be predic-

ive of treatment responsiveness in patients with CAE,
s were the characteristics of ictal networks before
reatment (Tenney et al., 2018; Ossenblok et al., 2019).
t should be noted that scalp-level EEG analysis, as
emonstrated in the present paper, does not allow
irect interpretations in terms of underlying neu-
oanatomy. Accordingly, many efforts were made to
econstruct active brain sources from scalp signals.
owever, the signals detected by each electrode result
ot only from the underlying neurons, but from all
ctive sources, superposed as a function of their dis-
ance and orientation. This makes the reconstruction

computationally very demanding problem that is
dditionally prone to spurious results due to volume
onduction and the effects of field spread (Schoffelen
nd Gross, 2009; Anastasiadou et al., 2019). For these
easons, EEG-based network analyses based on the
evel of reconstructed sources are not that common
n clinical practice. In contrast, scalp EEG brain net-
orks are relatively straightforward to derive and are

herefore the most common approach despite the
imited neurobiological interpretation, including EEG
rain functional connectivity networks in paediatric
pilepsy (Sargolzaei et al., 2015). However, caution is
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equired upon investigation of scalp-EEG networks,
ince spurious estimates of functional connectivity can
ccur between the channels due to the effects of
olume conduction and therefore often leakage cor-
ections are desirable (Lai et al, 2018). Moreover, the
usceptibility to produce such spurious data and the
nterpretation of the network metrics can also depend
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n the choice of the recording reference and correla-
ion metrics (Anastasiadou et al., 2019).
o conclude, the utilization of network approaches
o study the collective activity of the healthy and dis-
ased brain is a rapidly developing field and one of
he hottest topics in the neuroscientific community
Bassett and Sporns, 2017; Lynn and Bassett, 2018).
n the last decade, brain connectivity concepts are
ecoming increasingly important also in terms of clin-

cal applications (Stam, 2014; Sargolzaei et al., 2015;
fshari and Jalili, 2017). Particularly in the field of
pilepsy, EEG-based connectivity maps have gained
ignificant prominence in the assessment of brain
unction with the potential to provide a decision
upport system for epilepsy diagnosis and seizure pre-
iction and treatment. In the present contribution,
e aimed to introduce the clinical neurologist and
pileptologist to this new theoretical paradigm and
emonstrate a concrete example of how networks are
onstructed from real clinical EEG data. We believe that
uch interdisciplinary endeavours have sufficiently
atured to be able to start to address the many chal-

enges of our time, not least aiding the diagnosis and
reatment of disease, even though there remains sig-
ificant challenges before such approaches are used

n everyday practice. �
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ummary didactic slides are available on the
ww.epilepticdisorders.com website.
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TEST YOURSELF
EDUCATION

(1) Which two parameters define a small-world network?
A. Low-clustering coefficient and short average path length.
B. High-clustering coefficient and long average path length.
C. High-clustering coefficient and short average path length.
D. Low-clustering coefficient and long average path length.

(2) What are the common characteristics seen in functional brain network analysis in neurological diseases?

(3) EEG analysis using the tools based on network science could benefit a clinician in which areas?
A. Diagnosis.
B. Treatment choice and responsiveness.

Wang J, Zuo X, He Y. Graph-based network analysis of resting-
state functional MRI. Front Syst Neurosci 2010; 4: 16.

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’
networks. Nature 1998; 393: 440-2.

Wilke C, Worrell G, He B. Graph analysis of epileptogenic
networks in human partial epilepsy. Epilepsia 2011; 52(1):
84-93.

Xue K, Luo C, Zhang D, et al. Diffusion tensor tractogra-
phy reveals disrupted structural connectivity in childhood
absence epilepsy. Epilepsy Res 2014; 108(1): 125-38.

Yaffe RB, Borger P, Megevand P, et al. Physiology of func-
tional and effective networks in epilepsy. Clin Neurophysiol
2015; 126(2): 227-36.

Youssofzadeh V, Agler W, Tenney JR, Kadis DS. Whole-brain
MEG connectivity-based analyses reveals critical hubs in
childhood absence epilepsy. Epilepsy Res 2018; 145: 102-9.

Yu H, Zhu L, Cai L, et al. Variation of functional brain
connectivity in epileptic seizures: an EEG analysis with
cross-frequency phase synchronization. Cogn Neurodyn
2020; 14(1): 35-49.
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C. Automatic seizure detection.
D. All of the above.

Note: Reading the manuscript provides an answer to all q
website, www.epilepticdisorders.com, under the section
Epileptic Disord, Vol. 22, No. 5, October 2020

uestions. Correct answers may be accessed on the
“The EpiCentre”.
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