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ABSTRACT - The human brain is increasingly seen as a dynamic neural sys-
tem, the function of which relies on a diverse set of connections between
brain regions. To assess these complex dynamical interactions, formalism
of complex networks was suggested as one of the most promising tools
to offer new insight into the brain’s structural and functional organiza-
tion, with a potential also for clinical implications. Irrespective of the brain
mapping technique, modern network approaches have revealed funda-
mental aspects of normal brain-network organization, such as small-world
and scale-free patterns, hierarchical modularity, and the presence of hubs.
Moreover, the utility of these approaches, to gain a better understanding
of neurological diseases, is of great interest. In the present contribution,
we first describe the basic network measures and how the brain networks
are constructed on the basis of brain activity data in order to introduce
clinical neurologists to this new theoretical paradigm. We then demon-
strate how network formalism can be used to detect changes in EEG-based
functional connectivity patterns in six paediatric patients with childhood
absence epilepsy. Notably, our results do not only indicate enhanced syn-
chronicity during epileptic episodes but also reveal specific spatial changes
in the electrical activity of the brain. We argue that the network-based evalu-
ation of functional brain networks can provide clinicians with more detailed
insight into the activity of a pathological brain and can also be regarded as
a support for objective diagnosis and treatment for various neurological
diseases.

Key words: electroencephalography (EEG), childhood absence epilepsy,
brain networks, functional connectivity, network neuroscience
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In the past two decades, the new science of complex
networks has emerged as a powerful tool to charac-
terize the structure and function of various real-world
systems with applications spanning from biological
to technological, and social sciences (Barabdsi, 2012;
Boccaletti et al., 2014; Gosak et al., 2018; Halu et al.,
2019).Recentdevelopments in the quantitative analysis
of complex networks have been rapidly translated also
to studies of brain network organization (Bullmore
and Sporns, 2009; Park and Friston, 2013; Muldoon
and Bassett, 2016; De Domenico et al., 2016). In this
vein, brain areas represent nodes of a network and
the edges stand either for structural connections or for
functional associations. Structural brain networks usu-
ally describe anatomical parcellation of the brain and
links signify physical connections between different
areas that are acquired from MRI or histological data
(Gong et al., 2009). An even more popular concept is
the functional brain network, in which the signals from
different regions or activity of sites are pairwise com-
pared and connected on the basis of some similarity
measures, such as cross-correlation (Reijneveld et al.,
2007). Two nodes of the brain network are then con-
nected if their degree of synchronization is statistically
significant. Studies differ in the type of measured sig-
nal (EEG, MEG, DTI, fMRI) and protocol to build up
functional connectivity maps, but they all share the
same idea that the extracted brain networks are sub-
sequently analysed with tools from the realms of the
complex network theory (Rubinov and Sporns, 2010).
In this manner, the brain can be reliably quantified
with a small number of neurobiologically meaning-
ful and rather easily computable measures. The idea
of utilizing such advanced computational methods for
assessing neurological data is nowadays established as
a new discipline — network neuroscience (Bassett and
Sporns, 2017; Podobnik et al., 2017; Bassett et al., 2018).
These methods have demonstrated that human brain
networks display properties such as a small-world and
scale-free character, hierarchical modularity, and the
presence of hubs, which may directly facilitate cog-
nitive processes (Bassett and Bullmore, 2016). Most
importantly, an increasing amount of evidence sug-
gests that these characteristics are altered in disease
states, thereby potentially providing important new
biomarkers for neurological and psychiatric disorders
(Stam, 2014; Braun et al., 2015; Navas et al., 2015; Berolt,
2019).

Construction and analysis of complex
brain networks

A network is a mathematical representation of a com-
plex system, composed of two basic components —
nodes (vertices) and connections, or edges, between

them. Construction of a functional connectivity brain
network consists of four main steps. First, one must
define the network nodes, a process that depends
mainly on the technique used for recording the brain
activity. While in fMRI studies, parcellation into pre-
defined anatomical regions or a single-voxel approach
is typically applied, in EEG and MEG studies, the sur-
face sensors or recording electrodes themselves can
be selected as nodes (Stanley et al., 2013; Wang et al.,
2010). Alternatively, EEG- or MEG-based source recon-
struction techniques can be used to assess functional
connectivity, however, this is computationally a very
challenging task (Schoffelen and Gross, 2009; Lai et
al, 2018; Anastasiadou et al, 2019). Next, irrespective of
the measuring technique and the definition of nodes,
a criterion for association between nodes must be
established. Different analytic techniques have been
developed to distinguish statistical interdependen-
cies between two or more time series of regional
activity varying from calculating the Pearson correla-
tion coefficient to more complex methods such as
quantification of synchronisation of frequencies, con-
sistency of phase differences, and Granger causality
analysis, among others (Stam and Van Straaten, 2012;
Coben and Mohammad-Rezazadeh, 2015). From this,
an N-by-N association matrix is generated, compil-
ing pairwise association between all node pairs with
each matrix cell representing the strength of the con-
nection between a given pair of nodes in a graph.
Generally, a threshold is applied, discarding all the
links, the strength of which does not exceed a pre-
determined value. This produces a binary adjacency
matrix, in which all the connections are considered
equal (Stam, 2014). The procedure for generation of the
functional brain network based on measured signals is
schematically presented in figure 1.

From here, network parameters can be calculated,
offering an insight into the complex neuronal architec-
ture. The function of the brain is generally perceived
as having to meet two distinct, opposing demands.
Firstly, it needs to be highly segregated which enables
local specialization for preforming specific tasks and
secondly, it must integrate information on the global
level (Reijneveld et al., 2007). Several different mea-
sures are available for quantifying various aspects of
optimal brain organisation. The most important ones
are described below.

The node degree is equal to the number of connec-
tions the node forms. It is the most fundamental
measure from which many others are derived upon.
In terms of functional brain networks, a higher degree
of a given node indicates a high level of synchronicity
with many other nodes (Bullmore and Sporns, 2009).
The degree distribution of a healthy brain network is
heterogeneous and exhibits a small number of highly
connected nodes and a high number of sparsely
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Figure 1. lllustration of construction of a functional brain network from EEG data. For selected EEG epochs (A), correlation matrices
that encompass the information on statistical dependencies between EEG channels are calculated (B). By thresholding the correlation
matrix, a connectivity matrix is established (C), which uniquely defines the functional brain network (D).

connected nodes. The clustering coefficient, an
important parameter of local structure, is defined as
a fraction of connections that are made between the
neighbours of a node. In brain networks, neighbours
of a node tend to be connected with each other as
well, forming a cluster. In terms of function, a high
level of clustering indicates high local efficiency in
information transfer and resilience to random attacks
and subsequent node failures (Rubinov and Sporns,
2010; Bullmore and Sporns, 2009). The shortest path
length is the smallest number of edges that must
be traversed to get from one node to another (Van
Straaten and Stam, 2013). Brain networks have a short
average path length, again supporting efficient parallel
information transfer and global integration. Both of
the above-mentioned attributes found in brain net-
works, the high level of clustering and short average
path length are characteristics of the so-called “small
world networks” (Watts and Strogatz, 1998; Bassett and
Bullmore, 2016). As a form that is “in-between random
and regular networks”, this type of organisation pro-
vides a balance between segregation and integration
of information processing, and seems to be optimal
for the function of many complex systems, including
the brain. Furthermore, small world organization
enables economic instalment of neuronal connec-
tions into the physically limited anatomical space of
the skull (Bassett and Bullmore, 2016). Investigating a
complex system, one is often interested in unveiling
the most pivotal elements responsible for the efficient
communication throughout the network. High degree
nodes, which exhibit a small average distance to other
nodes of the network, are considered hubs of the
network and their organization is associated with
inter-individual differences in cognitive performance
and intelligence (Van Den Heuvel et al., 2009; Wang et

al., 2010). Hubs, however, at the same time, represent
weak spots since failure of a hub could have detrimen-
tal consequence on network functionality (Rubinov
and Sporns, 2010). Highly connected nodes tend to be
preferentially connected to other high-degree nodes,
forming the so-called “rich club” found in structural
as well as functional networks (Grayson et al., 2014).
Brain networks are divided into modules, formed by
a subset of strongly interconnected nodes with few
connections to the nodes in other modules (Meunier
et al.,, 2010). Large-scale modules, also called “com-
munities”, in the brain network belong to the major
functional system of the brain involved in specific
neurological functions such as motor, somatosensory
orvisual areas (Stam and Van Straaten, 2012). This mod-
ular organisation is hierarchical, as smaller modules
exist within larger modules (Sporns and Betzel, 2016).
A schematic overview of network metrics used for the
characterization of brain networks is shown in figure 2.

Brain networks in neurological diseases

Network organization in neurological disease almost
always reflects a deviation from the optimal pattern,
which is characterized by small-worldness, hierarchi-
cal modularity, heterogeneity, and hub nodes that are
interconnected in a rich club. The extent of network
changes is often correlated with the extent of the
underlying structural pathology and the severity of
the clinical symptoms. Already, brain networks have
been studied in a plethora of altered states in neu-
rological disorders, psychiatric states, and following
injury (Stam, 2014). For example, in Alzheimer’s dis-
ease, a neurodegenerative condition associated with
a progressive loss of nerve cells, the functional brain
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Figure 2. Graphical representation of main network parameters.
Node degree is the number edges attached to a given node. For
“a” node (green), its node degree equals 4. Clustering coefficient
measures how well a node’s neighbours are connected to each
other. Node “b” (orange) has three neighbours (solid orange
lines), which could theoretically form three connections. Since
the HUB node is not connected to the posterior neighbour of
node b, only two connections out of a possible three are present
(dotted lines). Node that the clustering coefficient of node b is
therefore 2/3. The length of the shortest path (L) between nodes
c and d is drawn in pink. The violet node is considered a hub,
since its degree is considerably higher than the average degree.

networks lose their normal small-world structure, and
regress towards a less efficient regular-like archi-
tecture (Supekar et al., 2008; Jalili, 2016). Moreover,
previous studies indicate that hub nodes exhibit the
greatest beta amyloid depositions, which leads to the
conclusion that they are preferentially targeted by the
disease (Dai et al., 2015). Some network analysis stud-
ies showed that network efficiency is also reduced
in Parkinson’s disease. In particular, Li et al. found
that patients with Parkinson’s disease have decreased
connections in the limbic/paralimbic/subcortical mod-
ule and the cognitive control/attention module (Li et
al., 2017a). Moreover, in people with schizophrenia,
a severe psychiatric disorder, the functional connec-
tome displays many alterations, including reductions
in putative measures of local processing, i.e. clustering
coefficients, as well as increases in global integration
metrics, reflected by shorter path-lengths. Conse-
quently, schizophrenicbrains have amore random-like

architecture with a higher level of global integra-
tion and reduced local processing, and many of the
symptoms of the disease are believed to originate
from aberrantly connected networks or brain regions
(Stephan et al., 2009). Other examples of studies on
brain connectivity patterns include investigations of
brain tumour patients, changes in brain networks in
cases of autism spectrum disorders, dementia, trau-
matic brain injury and recovery after stroke, to name
only a few (Mears and Pollard, 2016). Of course, a lot
of attention has also been devoted to epileptic brain
dynamics. Epilepsy is the second most common neu-
rological disorder and in the last decade more and
more studies have examined the rhythmic nature of
epileptic activity from a network perspective. In the
next section, we briefly summarize the main findings
obtained by innovative network-based approaches in
clinical epilepsy research and demonstrate a concrete
example of how the EEG-derived connectivity pattern
changes in cases of epileptic episodes.

EEG-based functional network analysis
in epilepsy

Epilepsy is a common neurological disorder that
affects approximately 1% of the world’s population. It
causes a hyperexcitable state of parts of the brainand is
characterized by abnormal synchronized firing activity
of the neurons involved in a seizure (Van Straaten and
Stam, 2013). Epilepsy isincreasingly recognized as adis-
order of large-scale brain networks, as it is evident that
otherwise healthy functional networks are recruited
during epileptic activity. As seizures spread widely
throughout the brain, presumably along pre-existing
neural pathways, patients lose control of certain func-
tions. These functions return when the seizure abates,
implying involved brain regions are also responsible
for normal brain function. What has been less clear
is precisely which brain networks are involved and
the extent to which functional networks are perturbed
during seizures, interictal activity, and at other times
(Abbott et al., 2019).

Studies suggest that epileptic brain dynamics can be
described as originating from an underlying complex
epileptic network that links multiple brain regions
(Van Diessen et al.,, 2013; Van Straaten and Stam,
2013; Sargolzaei et al., 2015). Network analysis in both
primary generalized and focal seizures has shown
that seizures are not disorganised or chaotic events,
but in fact display an organised temporal and spatial
structure (Braun et al., 2015; Abbott et al., 2019). What
happens with functional networks before, during and
after a seizure might provide insight into the dynamic
processes involved (Van Straaten and Stam, 2013).
On the local level, focal epilepsy is characterized
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by a small brain area with abnormally increased
excitability (such as the epileptogenic zone and the
origin of high-frequency oscillations in temporal lobe
epilepsy), increased structural connectivity (possibly
the result of damage and rewiring) and one or more
highly connected hubs. The local components may be
responsible for the increased activity, synchronization
and network regularity in the interictal state. Only if
the activation exceeds a critical threshold will activity
spread through general hub-like structures to the rest
of the network, and this then results in a generalized
seizure and a transiently hyper-regular functional net-
work. If this process occurs repeatedly, long-distance
connections and general hubs will become damaged,
resulting in a loss of long-distance connectivity and,
eventually, in cognitive dysfunction in patients with
epilepsy (Stam, 2014).

In the following, we demonstrate how the network
theory can be utilized for functional connectivity net-
works in six children with childhood absence epilepsy
(CAE) and show how the topological features of EEG-
derived networks change during epileptic episodes.
The children were five to eight years of age and had
normal neurological state and development. Their
history was typical of brief and frequent absences
without myoclonic jerks or any other type of seizure.
All but one were treatment naive at the time of EEG
recording. One patient was already being treated
with low-dose valproate for three days. Their EEGs
showed normal background brain activity interrupted
by periods of bilateral, symmetrical and synchronous
discharges of 3-Hz generalised spike-and-wave (SW)
discharges lasting between 4 and 18 seconds, mainly
provoked by hyperventilation. Photic stimulation did
not precipitate the seizures, nor subclinical discharges.
Clinically, the discharges corresponded to unrespon-
siveness with halting of over-breathing, spontaneous
eye opening and staring. There were no pronounced
automatisms or myoclonia.

CAE is an idiopathic, generalized epilepsy with a typ-
ical onset between 4-10 years of age (Kessler and
Mcginnis, 2019). While affected children were gen-
erally believed to have a normal neurological and
cognitive development, an increased risk of attention
deficit and subsequent academic difficulties has been
reported (Masur et al., 2013). Clinically, frequent short-
lasting absence seizures with loss of awareness and
possible oral automatism in particular are observed
(Matricardi etal., 2014). EEG recordings show bilaterally
synchronous and symmetrical discharges of rhythmic
3-Hz spike-wave complexes with sudden onsetand ter-
mination (Matricardi et al., 2014).

We used EEG recordings from six patients using the
standard international 10-20 electrode placement. The
acquisition was set to a unipolar mode, using the
average of both auricular electrodes as reference sites.

Epileptic EEG-derived brain networks

The patients had absence seizures during the EEG
recording. The raw data was exported from the Neuro-
fax EEG-1000 version 05-91 (Nihon Kohden, Shinjuku-
ku, Japan) program used in the University Medical
Centre Maribor in the ASCI format and subsequently
analysed using custom-made Python scripts. The study
was performed with written consent obtained from
subjects’ parents/caregivers and with the approval of
the Ethical committee of University Medical Centre
Maribor (UKC-MB-KME-31/20). First, the EEG signals
were band-pass filtered between 0.1 and 70.0 Hz.
Sampling frequency was 512 Hz. The approximate
20-minute recordings were divided into 10-second
epochs and altogether 60 artefact-free epochs were
chosen for further analysis, 30 from normal seizure-
free brain activity (control epochs; C) and 30 including
generalized SW discharges (epileptic epochs; EPI), cor-
responding clinically to absence seizures. In figure 3,
the procedure of EEG-functional network construction
is presented for a typical epoch with control (figure 3A)
and a typical epoch with epileptic (figure 3B) activity.
To evaluate the synchronicity of the recorded signals,
we calculated the pairwise cross-correlation between
all traces of a recording. Correlation matrices were
established for each epoch and thresholds were deter-
mined for control and epileptic epochs, respectively
(figure 3C, D), based on the average value R,(i) and
standard deviation Rsp (i) of the correlation matrix for
the i-th epoch. In particular, the connectivity threshold
Rt1 (i) for the i-th epoch was then determined as Ry (/)=
Ravg (D+0.1-Rsp (i). Finally, from the correlation matrices,
functional connectivity networks were constructed
(figure 3D, E). Comparison of both connectivity maps
indicates denser networks during epileptic seizures.
In order to gain more precise insight into the topo-
logical reorganization during the epileptic episodes
and quantify the changes seen, some network metrics
were calculated based on all 30 epochs in the given
group. The box-plotsin figure 4A, B, Cshow the average
correlation coefficients, node degrees and cluster-
ing coefficients, respectively. Evidently, time series of
seizure-free periods (C) are much less synchronized
and their corresponding networks are less dense and
also less locally clustered when compared to networks
from epileptic periods (EPI). This corroborates pre-
vious studies (Braun et al., 2015; Kramer and Cash,
2012; Stam, 2014). Additionally, we evaluated the dif-
ferences in node degrees of individual channels in
order to gain some insight into the role of individual
brain areas during epileptic activity (figure 4D). The
node degree of almost all channels increased signifi-
cantly during epileptic activity with the exception of
channels Fp2, O1, F8, T4 and T6, where the change
was insignificant, and channel O2, where the average
number of connections decreased. For a more in-
depth investigation of epileptic activity initiation and
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Figure 3. Functional brain networks from normal and epileptic brain signals. Upper panels show a representative epoch for seizure-
free brain activity (A), its corresponding correlation matrix (C) and brain network (E). The lower panels display a representative epoch
(B), correlation matrix (D) and network (F) during the absence seizure. Electrode position is characterised by the letters next to the
nodes within the network (Fp: prefrontal; F: frontal; T: temporal; O:occipital; C: central).

propagation, more advanced theoretical approaches
with additional imaging techniques should be applied.
However, despite the low spatial resolution of EEG
recordings, this simple analysis of routinely available
EEG recordings could offer crude insight into topo-
logical changes of network dynamics during epileptic
activity. The ease of data acquisition and the simplicity
of the analysis makes this a promising approach that
could help clinicians in their daily practice.

Multilayer epileptic brain networks

Recent research suggests that the standard network
approach might be an over-simplification (Boccaletti
et al, 2014; Kivela et al., 2014; Aleta and Moreno,
2019). Namely, brain network construction is liable
to aggregation, averaging or disregarding a certain
portion of the recorded data, mainly due to lim-
itations in recording equipment and mathematical
analytical tools available. This inevitably leads to loss
of some crucial information about brain functional
connectivity. An elegant solution to the problem
emerged with the development of a multilayer net-
work approach. A multilayer network can be thought

of as a network of networks or a collection of inter-
connected networks, i.e. each network offers a specific
type of information about the brain and simultane-
ously acknowledges interlayer connectivity (Bassett
and Sporns, 2017; De Domenico, 2017). Most often,
this formalism is used to present connectivity in dif-
ferent frequency bands and variability of connectivity
over different time scales or with respect to differ-
ent task execution, and enlighten the relationship
between structural and functional connections of the
brain (Muldoon and Bassett, 2016; Gosak et al., 2018;
Vaiana and Muldoon, 2018). While the methodology
is still being developed and improved, its applica-
tion to brain functional data has already uncovered
several interesting features, from the emergence of
new interlayer hubs and their significance in neu-
ropsychiatric disease to the importance of network
reconfigurations during the resting state on a millisec-
ond scale, to name just a few (De Domenico et al., 2016;
Kabbara et al., 2017). Noteworthy, the utilization of
multilayer network formalism is recently gaining atten-
tion also in the context of epileptic brain networks
(Yu et al., 2020).

Here, we present an example of how the multi-
layer concepts can be used to identify different kinds

524

Epileptic Disord, Vol. 22, No. 5, October 2020



Epileptic EEG-derived brain networks

Aos D

=07 ] 14
[}

©
% 06 -

805

5., i 124 %
N Ns
s "
: , , 10
C EPI
B * ¥k
12 H g ?

—_—r——
—_——— e
———
———— o

|
—_—
— e ¢
I3
= i
p—————s— 1§
—e— I
3
|;(-
——
S — S,

C EPI

—— 5
Q
[0}
>
9 o @
3 pel
S S 6
©
B 6 5
=z >
<
3 T T 4 4
(o3 EPI
CO.SS <
+= 0.80 | 24
2
]
& 0.75 l
Q
o
207 Y AN RSN &
2 1 O O
_ & P O (K
30.65 I QQQQ'\ Q%(& Q((Q,\ QQD
Q
0.60 . -

T T T T T T
Q RO BROARONIRSPN
(R G B B B¢

Channels

Figure 4. EEG-based brain network analysis. Average correlation coefficients (A), node degrees (B) and clustering coefficients (C) for
control (orange) and epileptic (EPI) (green) epochs, combined for all channels and all analysed epochs from all six patients. (D) Node
degrees of individual channels. The data shows combined average values for specific channels, pooled for control (orange) (C) and
epileptic (green) (EPI) epochs from all six patients. The box indicates the 251" and 75t percentile, the line indicates the median value
and the whiskers indicate the minimal and maximal values. ***p < 0.001, **p < 0.01, *p < 0.05, NS: not significant; Student’s t-test was
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of changes in the brain’s collective activity during
epileptic episodes. For this purpose, we took all pos-
sible subsequent two-second epochs from epileptic
activity intervals from all patients, which lasted 12
seconds or more, in order to have at least six subse-
quent epochs for interlayer analysis. In this manner,
we derived 11 series of six to eight epileptic epochs
from four different patients and 11 equivalent series of
artefact-free epochs of control activity from the same
four patients. Then, instead of averaging the extracted
correlation matrices prior to the network construction,
we designed a network layer for each epoch separately,
as visualized in figure 5A. This enabled us to assess
the dynamic persistency of the functional connectivity
patterns and to investigate how this changes dur-
ing epileptic activity compared to control conditions.
In particular, we calculated the Pearson correlation
coefficient between the a-th and o’-th network layer
(Boccaletti et al., 2014) separately for the degree and
clusteringinterlayer correlations. To account for differ-
ent average degrees, we used a variable connectivity
threshold and set the average degree to five in all

network layers. The matrices showing the degree of
interlayer degree correlations between subsequent
network layers for the normal and epileptic episodes
are shown in figure 5B, C. Evidently, the correlations are
higher for networks corresponding to epileptic activ-
ity. In figure 5D, E, we show the average values for
interlayer degree and clustering correlations for all 11
epoch series for the normal and epileptic activity. Our
results indicate that the EEG-derived brain network
during the resting state is rather dynamic, whereas
during the phases of absence seizures, the spatio-
temporal activity and the resulting network topology
are less variable. It should be noted that this is just a
demonstration on how the multilayer network formal-
ism can be used to quantify the collective activity of the
brain. Further studies will be necessary to explore how
the persistency of the network structure depends on
the epoch lengths, frequency bands, and, of course,
type of epileptic seizure. The multilayer brain net-
work approach also offers the potential to examine
the temporal evolution and dynamics of epileptic brain
networks, which can lead to importantimplications for
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studying dynamic interactions during pre-ictal, ictal,
and post-ictal periods (Yaffe et al., 2015), and by track-
ing subtle differences in network dynamics, possibly
also to the detection of seizure onsets before they
become evident electrographically. Moreover, the pro-
posed formalism could provide a suitable theoretical
framework to examine the evolution of brain networks
over much longer periods of time, such as in EEG
long-term monitoring or even to track the network
reconfigurations of the same patient over years.

Discussion and conclusion

The EEG provides a fundamental tool in the pri-
mary diagnosis of epilepsy. It supports the notion
of characteristic temporal events, such as interictal
spikes associated with epileptic foci, and allows one
to distinguish between generalized and focal neuro-
physiological correlates of epilepsy (Rosenow et al.,

2015). However, an interpretation of EEG recordings
based solely on visual inspection is very subjective
and prone to human error (Kirmani, 2013). In recent
years, many efforts have been devoted to the develop-
ment of automated techniques (Cabrerizo et al., 2011).
The success of these methods depends heavily on the
number of extracted parameters, and the functional
connectivity networks have proven to be a valuable
repertoire that can significantly improve the precision
of such algorithms (Sargolzaei et al., 2015).

Moreover, EEG-derived brain networks were not only
found to be beneficial for the epilepsy diagnosis
but also for its treatment. The ability to identify the
seizure onset zone through the computation of net-
work diagnostics has important clinical implications, as
this could improve the localisation of brain areas that
are appropriate for resection, revealing candidates for
surgical treatment among patients with drug-resistant
epilepsy (Braun et al, 2015). Wilke et al. studied
whether critical nodes could be identified in the
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networks of patients undergoing epilepsy surgery
(Wilke et al., 2011). Using EEG recordings, they found
that a reduced number of seizures post-surgery was
associated with resection of brain regions that had
the highest betweenness centrality, also suggesting
that critical network points are involved in either the
start or spreading of seizures. In a prospective study
of individuals with both brain tumours and epilepsy
by van Dellen et al., the networks of individuals who
became seizure-free after surgery were more inte-
grated and showed higher centrality at follow-up than
the networks of patients who were not seizure-free
after surgery (Van Dellen et al., 2014).

Several of the above-mentioned aspects of network
theory utilization have already been investigated in
CAE - from the perspective of both structural as well
as functional connectivity. This research has provided
an important foundation for better understanding the
initiation and spreading of absence seizures (Bear et
al., 2019). The structural networks in CAE show several
deviations from the optimal complex system organi-
zation, such as a decrease in small-worldness scalar
on the global level as well as decreased connectiv-
ity and efficiency of specific subnetworks (Xue et al.,
2014; Qiu et al,, 2017). Even more interesting are the
changes in functional connectivity that confirm well
known facts, such as the crucial role cortico-thalamic
connectivity plays in CEA (Li et al., 2017b; Jiang et al.,
2019). On the other hand, this new approach provides
new insight into the development of seizures in CAE.
In contrast to the general perception of SW discharges
occurring abruptly as bilaterally synchronous gener-
alized events, a detailed network approach to spatial
and temporal profiles of seizure development showed
a low-frequency frontal cortical source preceded by
an occipital source prior to the first SW discharges
(Gupta et al., 2011). Critical hubs in focal cortical, sub-
cortical and cerebellar regions during seizures were
identified, likely involved in seizure generation and/or
maintenance (Youssofzadeh etal., 2018). Investigations
devoted explicitly to the genesis of the generalised
hyper-synchronous SW discharges during seizures
have revealed that the transition of SW discharge pat-
tern from cortical local generation to generalization
does not occur symmetrically, but is heterogeneous
and exhibits dynamic time lags (Amor et al., 2009;
Sarrigiannis et al., 2018). This might be related to our
observation that the changes in time-averaged net-
work structure occurring during seizures were not
symmetric, as the node degree was increased more
profoundly in the left hemisphere (see figure 4D).
Furthermore, seizure termination was found to be a
gradual process in which several cortical, particularly
frontal, areas are involved (Jiang et al., 2019). Notewor-
thy, a study that focused solely on background brain
activity in patients suffering from absence seizures

Epileptic EEG-derived brain networks

revealed that the alpha-band functional network pro-
files exhibit a higher inter-module connectivity in
comparison to those from healthy subjects, which
implies the facilitation of emerging epileptic dis-
charges (Chavez et al., 2010).

Despite an increasing amount of data describing
changes in network parameters in patients with CEA,
the link between these parameters and clinical appli-
cation remains elusive. Currently, it would appear
that altered functional connectivity may help in bet-
ter understanding associated cognitive comorbidities
(Bear et al., 2019). Functionally decreased connectivity
and deactivation in default network mode were found
both in conjunction with generalised SW activity and
during the interictal period, and these abnormalities in
the defaultmode network could be related to cognitive
impairmentduring seizures (Laufs etal., 2006; Luo etal.,
2011). At the same time, new network measures, such
as the connection coefficient, are being developed to
detectand characterize ictal states in CEA which would
ultimately allow seizures to be detected automatically
(Giudice et al., 2017). A potential for clinical use also
became clear when different focal areas with a high
degree of local connectivity identified in the narrow
pre-ictal temporal window were found to be predic-
tive of treatment responsiveness in patients with CAE,
as were the characteristics of ictal networks before
treatment (Tenney et al., 2018; Ossenblok et al., 2019).
It should be noted that scalp-level EEG analysis, as
demonstrated in the present paper, does not allow
direct interpretations in terms of underlying neu-
roanatomy. Accordingly, many efforts were made to
reconstruct active brain sources from scalp signals.
However, the signals detected by each electrode result
not only from the underlying neurons, but from all
active sources, superposed as a function of their dis-
tance and orientation. This makes the reconstruction
a computationally very demanding problem that is
additionally prone to spurious results due to volume
conduction and the effects of field spread (Schoffelen
and Gross, 2009; Anastasiadou et al., 2019). For these
reasons, EEG-based network analyses based on the
level of reconstructed sources are not that common
in clinical practice. In contrast, scalp EEG brain net-
works are relatively straightforward to derive and are
therefore the most common approach despite the
limited neurobiological interpretation, including EEG
brain functional connectivity networks in paediatric
epilepsy (Sargolzaei et al., 2015). However, caution is
required upon investigation of scalp-EEG networks,
since spurious estimates of functional connectivity can
occur between the channels due to the effects of
volume conduction and therefore often leakage cor-
rections are desirable (Lai et al, 2018). Moreover, the
susceptibility to produce such spurious data and the
interpretation of the network metrics can also depend
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on the choice of the recording reference and correla-
tion metrics (Anastasiadou et al., 2019).

To conclude, the utilization of network approaches
to study the collective activity of the healthy and dis-
eased brain is a rapidly developing field and one of
the hottest topics in the neuroscientific community
(Bassett and Sporns, 2017; Lynn and Bassett, 2018).
In the last decade, brain connectivity concepts are
becoming increasingly important also in terms of clin-
ical applications (Stam, 2014; Sargolzaei et al., 2015;
Afshari and Jalili, 2017). Particularly in the field of
epilepsy, EEG-based connectivity maps have gained
significant prominence in the assessment of brain
function with the potential to provide a decision
support system for epilepsy diagnosis and seizure pre-
diction and treatment. In the present contribution,
we aimed to introduce the clinical neurologist and
epileptologist to this new theoretical paradigm and
demonstrate a concrete example of how networks are
constructed from real clinical EEG data. We believe that
such interdisciplinary endeavours have sufficiently
matured to be able to start to address the many chal-
lenges of our time, not least aiding the diagnosis and
treatment of disease, even though there remains sig-
nificant challenges before such approaches are used
in everyday practice. O
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A. Diagnosis.

B. Treatment choice and responsiveness.
C. Automatic seizure detection.

D. All of the above.

TEST YOURSELF

(1) Which two parameters define a small-world network?

A. Low-clustering coefficient and short average path length.
B. High-clustering coefficient and long average path length.
C. High-clustering coefficient and short average path length.
D. Low-clustering coefficient and long average path length.

(2) What are the common characteristics seen in functional brain network analysis in neurological diseases?

(3) EEG analysis using the tools based on network science could benefit a clinician in which areas?

&

%) EE
UcaTioN =

Note: Reading the manuscript provides an answer to all questions. Correct answers may be accessed on the
website, www.epilepticdisorders.com, under the section “The EpiCentre”.
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