Epileptic Disord 2019; 21 (Suppl. 1): S88-S96

Progressive intellectual impairment in children with Encephalopathy related to Status Epilepticus during slow Sleep

Liam Dorris^{1,2}, Mary O'Regan¹, Margaret Wilson¹, Sameer M. Zuberi^{1,3}

¹ Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK ² Institute of Health and Wellbeing, University of Glasgow, Member of the European Reference Network EpiCARE, Glasgow, UK

³ School of Medicine, University of Glasgow, Glasgow, UK

ABSTRACT – We investigated whether Encephalopathy related to Status Epilepticus during slow Sleep (ESES) in childhood was associated with progressive intellectual decline. Participants were identified from the caseload of a single paediatric neurosciences centre and EEG department. A retrospective review of overnight sleep EEG reports (n=2200) over a five-year period identified twenty-two children as having the neurophysiological characteristics of ESES. All had repeat neuropsychological assessment using the WISC-III (UK) and/or WPPSI-R (UK). There was a statistically significant reduction in Full-Scale IQ and Performance IQ across a mean and median time interval of two years. Around a third of the participants showed a clinically significant regression in intellectual functioning evidenced by =>12-point reduction in IQ. These patients were not distinguishable from the rest of the cohort in terms of clinical history, imaging or duration of ESES. The reduction in IQ reflected reduced processing speed, working memory and overall cognitive efficiency. Children with a history of ESES require close monitoring in order to support educational planning and provide families with accurate information about prognosis.

Key words: ESES, CSWS, childhood epilepsy, intellectual decline

Encephalopathy related to Status Epilepticus during slow Sleep or ESES is an age-dependent and selflimited syndrome whose distinctive features include a characteristic age at onset (with a peak around 4-5 years), heterogeneous seizure types (mostly focal motor or unilateral seizures during sleep and absences or falls while awake), a typical EEG pattern (with continuous and diffuse paroxysms occupying a significant proportion of slow wave sleep) and a variable neuropsychological regression consisting of IQ decrease, reduction of language (as in acquired aphasia or Landau-Kleffner syndrome), disturbance

doi:10.1684/epd.2019.1063

Correspondence:

Liam Dorris Paediatric Neurosciences Research Group, Royal Hospital for Children, 1345 Govan Road, Glasgow G3 8SJ, Scotland, UK <liam.dorris@ggc.scot.nhs.uk> of behaviour and motor impairment (in the form of ataxia, dyspraxia, dystonia or unilateral deficit) (Tassinari *et al.*, 2000). The favourable seizure outcome is independent of the etiology and is observed also in cases with cortical malformations such as multilobar polymicrogyria (Guerrini *et al* 1998). The characteristic EEG patterns during slow wave sleep also disappear at approximately the same time, but focal interictal spikes may persist (Morikawa *et al.*, 1989; Bureau, 1995).

The first description of sub-clinical electrical status induced by sleep in children dates back to 1971 when Patry, Lyagoubi and Tassinari described in six children a peculiar EEG pattern occurring almost continuously in sleep, characterized by apparently 'subclinical' spike and wave for a variable length of time. Tassinari introduced the term "Electrical status epilepticus during slow sleep" and this was originally defined as status epilepticus occurring during at least 85% of slow sleep (Tassinari et al., 1977). More recently, the proportion of affected slow sleep required to affect cognition and behaviour has been recognised to be lower, with some authors suggesting that =>50% can be associated with cognitive sequelae. The most typical paroxysmal discharges on EEG are spike wave at 1.5 to 3.5-Hz polyspikes and polyspikes and wave. Secondary bilateral synchrony is the mechanism underlying continuous spikes and waves during slow sleep. In this respect, the apparently generalized seizures (absences, tonic-clonic seizures) occurring in this condition have, in fact, a focal onset (Tassinari, 1995). ESES can be present at various evolutionary stages within a spectrum of diseases, the prototypes of which are continuous spike and wave in slow sleep (CSWS), Landau Kleffner Syndrome (LKS) and some patients initially presenting with childhood (benign or rolandic) epilepsy with centrotemporal spikes (BECTS) (Galanopolou et al., 2000). Children with ESES generally demonstrate a global neuropsychological disturbance whereas those diagnosed with LKS typically display an isolated language disorder. In both syndromes, recovery of language functions may be associated with disappearance of continuous spike and slow wave during slow wave sleep. The neuropsychological disturbances are suspected to be a function of the genetic or symptomatic origin of the underlying epileptic condition, the cortical area of the primary focal paroxysmal activity, the patient's age and the severity and duration of the EEG abnormalities (De Negri, 1997).

ESES is a rare disorder although accurate incidence is difficult to determine. Morikawa *et al* found an incidence of 0.5% among 12,854 children evaluated during a 10-year period (Morikawa *et al.*, 1995). The Landau-Kleffner syndrome (LKS) and Encephalopathy related to Status Epilepticus during slow Sleep (ESES) are rare

childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of cognitive impairment. The two syndromes are distinct but have some overlap. Whether ESES as a whole should be defined as an independent syndrome or as an electroclinical feature of many epilepsy syndromes is a source of debate (see Hirsch et al., p. S5-S12). The duration of electrical status epilepticus during slow sleep has been correlated with the final neuropsychological outcome (Rousselle & Revol, 1995). It has also been suggested that electrical status epilepticus during slow sleep is a model for prolonged cognitive impairment induced by interictal paroxysmal activity (Tassinari, 1995; see also Tassinari and Rubboli, p. S82-7). "Interictal paroxysmal activity" may interfere with different cognitive processes, as demonstrated by neurophysiological, neuropsychological, and biochemical studies (Binnie, 1993; Wasterlain et al., 1993). It has been suggested that interictal epileptiform discharges have a role to play in the language regression seen in some children with autism, however, other studies have contradicted this view (Ballaban-Gil et al., 1998; De Menezes et al., 1998; Goldberg et al., 1998). What is certain from genetic studies is that autism, ESES and epilepsy may share the same underlying aetiologies (Lesca et al., 2012; Wolff et al., 2017).

Following resolution of ESES, improvement in language dysfunction, learning disability and psychiatric disturbances generally occurs but this is variable and individualized. The majority of affected children never return to normal levels, particularly for verbal and attention abilities (Morikawa et al., 1985; Roulet Perez et al., 1993; see also Arzimanoglou and Cross, p. S71-5). Margari et al followed 25 patients (19 male) from 2 to 16 years of age (mean age: 6 years \pm 3 SD) to examine the presence and course of neuropsychiatric disorder (mean duration of follow-up: 3.9 years) (Margari et al., 2012). At diagnosis of CSWS, 54% of patients had behavioral problems, 37.5% mental retardation, 33% learning disabilities, 17% developmental coordination disorder, 12.5% language disorder, and 8% pervasive developmental disorder. During the follow-up, neuropsychiatric dysfunctions remained unaltered in 52% of the patients, worsened in 24%, and improved in only 24%. The authors suggest that CSWS may be associated with a broad spectrum of neuropsychiatric disorders and may promote their worsening over time. Despite the apparent developmental impact of the ESES, there has been very little published related to neuropsychological outcomes, with only two very small cohort studies, e.g. Seegmüller et al. (2012) n=10 patients, and Scholtz et al (2005) n=7 patients.

Imaging	CT normal	CT normal	CT Left sided peri-ventricular white matter loss; PVL	MRI normal	MRI normal	MRI normal	MRI normal
Maximum epileptic activity	Right hemisphere emphasis	Assymetrical ESES, right hemisphere emphasis	Left hemisphere	Left hemisphere emphasis (temporal)	Bilateral	Bilateral	Left hemisphere emphasis (temporal)
Clinical presentation at diagnosis	No cognitive / behavioural concern	Language difficulties	Language and social commu- nication difficulties	Language and social commu- nication difficulties	No cognitive regression noted	Poor educational progress	Memory and learning problems
Age at diagnosis of ESES	3 years	5 years	8 years	6 years	4 years	5 years	11 years
Type of epilepsy	Generalised and focal epilepsy of unknown aetiology	Atypical childhood epilepsy with centrotemporal spikes	Focal epilepsy with structural aetiology	Focal epilepsy with unknown aetiology	Generalised epilepsy with myoclonic seizures (unknown aetiology)	Focal epilepsy with unknown aetiology	Generalised and focal epilepsy with structural aetiology
Age of onset	2.5 years	4 years	4 years	6 years	>1 year	7 months	10 years
Developmental history	Febrile seizure aged 2.5 years	Normal; mild dyspraxia	VP shunted 2 months; Right hemi paresis; Global cognitive delay	Uneventful	Normal	Delayed motor development	Acquired brain injury aged 7 years,
Neonatal history	Uneventful	Uneventful	Hydrocephalus secondary to aqueduct stenosis	Uneventful	Uneventful	Uneventful	Premature 26 weeks gestation,
IQ 2	65	68	56	69	78	66	108
IQ1	77	4	89	40	105	98	108
Patient IQ 1 IQ 2	-	7	£	4	Ŋ	9	~

Patient	IQ 1	IQ 2	Neonatal history	Developmental history	Age of onset	Type of epilepsy	Age at diagnosis of ESES	Clinical presentation at diagnosis	Maximum epileptic activity	Imaging
æ	40	40	Uneventful	Global developmental delay, behaviour problems	5 years	Generalised and focal epilepsy of unknown aetiology	5 years	Severe ongoing behavioural problems	Bilateral	MRI normal
6	40	40	Uneventful	Global developmental delay	4 years	Focal epilepsy of unknown aetiology	10 years	Increasing concern over poor language and learning	Left emphasis	MRI showed corpus- callosum abnormality
10	81	75	Uneventful	Restricted interests, rigid behaviour	3 years	Focal epilepsy of unknown aetiology	8 years	Continuing concerns	Right sided ESES	MRI abnormal, right-sided peri- ventricular leukomalacia
Ħ	81	75	Uneventful	Specific learning diffi- culties/clumsy	6 years	Focal epilepsy of unknown aetiology	6 years	Educational difficulties	Bilateral	MRI normal
12	65	50	Uneventful	Global developmental delay	5 years	Focal epilepsy of unknown aetiology	6 years	Continuing developmental concerns	Bilateral	MRI normal
13	79	62	Neonatal seizures	Mild right hemiplegia;	1 st week of life	Focal epilepsy with structural aetiology	7 years	Reduced concentration and deterioration in memory /reading	Left sided (occipital) ESES	MRI hemi- megalencephaly
14	59	56	Premature 32/40, severe IUGR,	Whooping cough aged 2 years 5 months	Aged 5.5 years	Childhood epilepsy with centrotemporal spikes	7 years	Language difficulties, poor educational progress	Bilateral	None

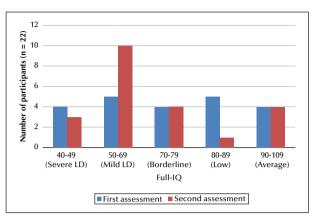
ð.
ue
ί'n
μ
ŭ
nt (
а
icip
t
pa
ch p
eac
)r (
nomena for eacl
u s
mei
ō
her
þ
al
inical
er cl
nd othei
0
nc
ıset, imaging ar
ij.
lag
.Е
et,
nsı
ō
ō
e e e
pe, age of on
pe,
e ty
лге
izure
se
lQ, sei
<u>–</u>
'n
ð
sh
2
ŝto
his
al
ιc
Clir
0
1
ble
Tal

Patient IQ	IQ 1	1Q 2	Neonatal history	Developmental history	Age of onset	Type of epilepsy	Age at diagnosis of ESES	Clinical presentation at diagnosis	Maximum epileptic activity	Imaging
	69	69	Neonatal seizures	Left hemiplegia, learning disabilities	15 years	Focal epilepsy with structural aetiology	15.5 years	Deterioration in school work	Bilateral with Right hemisphere emphasis	MRI right schizencephaly
	78	69	Uneventful	Normal	3 years	Myoclonic atonic epilepsy	3 years	Behavioural, motor and cognitive regression	Bilateral	MRI normal
	82	88	Uneventful	Delayed speech and language development	3 years	Focal epilepsy with unknown aetiology	3 years	Continuing speech delay	Bilateral with shifting emphasis	MRI normal
	40	40	Uneventful	Mutism aged 4 years, normal speech development prior	Aged 4	Landau-Kleffner syndrome	4 years	Continuing aphasia	Focal ESES left hemisphere	MRI normal
	106	92	Uneventful	None	5 years	Myoclonic atonic Epilepsy	5.5 years	Concentration, school difficulties	Bilateral	MRI normal
	82	70	Uneventful	Normal development	3 years	Focal epilepsy with unknown aetiology	8 years	Concentration, school difficulties	Bilateral	None
	65	69	Uneventful	Mild learning difficulties, late childhood diagnosis of Tourettes Syndrome treated with haloperidol	11 years	Focal epilepsy with unknown aetiology	12 years	Continuing concentration problems	Right sided ESES	MRI normal
	110	105	Uneventful	Accidental asphyxia aged 5yrs associated with status epilepticus	2.5 years	Focal epilepsy with structural aetiology	6.5 years	Memory and learning	Bilateral with right sided emphasis	MRI normal

The current study aimed to provide data on a larger series of children with treated ESES using standardised neuropsychological tests. We aimed to provide some preliminary data on the impact of ESES on the developing brain in terms of intellectual development in middle to late childhood.

Methods

Participants were identified by reviewing reports of 24-hour ambulatory EEG over a period of five years (*n*=2200). The recordings of those who exhibited marked sleep accentuation of epileptiform activity were reviewed. Those who fulfilled the diagnostic criteria for ESES, *i.e.* >85%, were identified. We also included children who had abnormal activity occupying 60-85% of slow wave sleep if there was a history of change in behavior and/or recent loss of skills. Children who were in non-convulsive status with a continuous dysrhythmia, awake and asleep, were excluded. Clinical records were reviewed to determine seizure types, aetiology, and behavioural and EEG features.


This was a retrospective study with cases managed by several clinicians and no uniform or standardized therapeutic paradigm for ESES. Cases were treated with several different anti-epileptic drugs including clobazam, prednisolone and valproate with variability in dose and combination of different treatments. In addition, the sequence and duration of different therapies was not controlled therefore the data on medication use in individual cases is not presented as no valid conclusions can be drawn from this data.

Participants

Twenty-two participants met inclusion criteria (13 males and nine females). The median age of the sample at initial assessment was 6 years (mean: 6.8, sd 2.9 years) with a range of 4-16 years. At follow-up, the median age was 7.5 years (mean: 9.3, sd 3.4 years) with a range of 6-19 years. This created a mean latency period between assessments of 2.5 years. The clinical histories of all patients are described in *table 1*. Thirteen participants were reassessed within three years and eight participants within 3-5 years. Five of 22 had a significant neonatal history and 5/22 had abnormal imaging using MRI/CT. There were heterogenous epilepsy types (see *table 1*).

Measures

Participants were assessed using the WISC-III (Wechsler Intelligence Scale for children, version 3, UK norm, UK-edition) or the WPPSI-R (Wechsler Primary and

Figure 1. Intellectual ability levels at first and second assessment (mean time interval 2.5 years).

Preschool Scale of Intelligence, revised, UK-edition). When patients were unable to complete all subtests of the WISC/WPPSI, pro-rated scores were derived using statistical techniques outlined within the manual. As this was a retrospective study there was no specified time period between the first and subsequent neuropsychological evaluations.

Results

At the time of their initial assessment, nine participants had a measured IQ within the learning disability range, four within the severe range (IQ: 40-49) and five within the mild to moderate range (IQ: 50-69). Four participants had an IQ within the borderline range (IQ: 70-79), five had an IQ within the low-average range (80-89), and a further four had an IQ within the average range (90-109). At follow-up assessment, thirteen participants had measured IQs within the LD range, three within the severe range, and ten within the mild to moderate range. Four participants had an IQ within the borderline range, one within low-average, and four within the average range. Therefore, 41% of the sample had a measured IQ within the learning disability range at first assessment compared to 55% at second assessment; an increase of 14% (figure 1).

As the data were not normally distributed, a repeatedmeasures non-parametric analysis (Wilcoxon) was used to compare group median FSIQ, VIQ and PIQ between assessment points (*figure 2*). There were significant differences in Full-Scale IQ with a small effect size (p=0.042; d=0.3), and performance IQ with a medium effect size (p=0.031; d=0.4). There was no significant difference in VIQ across time (p=0.421).

Figure 3 shows the change in IQ for each participant which can be correlated with the clinical histories shown in *table 1* (the participants 1-22 in table 1 correspond to those in *figure 3*).

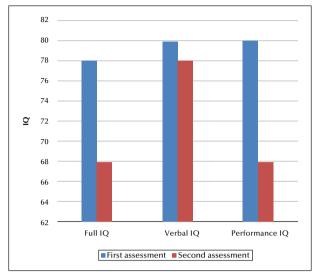


Figure 2. Changes in cohort median Full IQ, Verbal IQ and Performance IQ between first and second assessments.

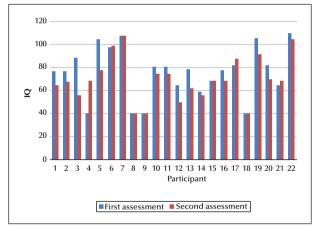


Figure 3. Individual participant changes in IQ between first and second assessment.

To address the important issue of statistical versus clinical significance regarding change in IQ scores, we analyzed the data using a conservative criterion of a =>12-point difference in IQ. When adopting this more conservative criterion to denote clinically significant change, seven participants were found to show a =>12-IQ point change with a mean FSIQ at initial assessment of 86 (sd=15), and at follow-up of 67 (sd=14.7) with a large effect size (d=1.3). The largest effect was observed in Performance IQ with a mean reduction of 24 points from 92 to 68 (p=0.018; d=1.5). A less dramatic drop in VIQ was observed with an average of a 9 point-change (d=0.4). If excluding those participants who scored at floor value at both time points (n=4), our findings suggest that 7/18 participants (38%) showed a highly significant intellectual decline affecting FSIQ and PIQ. These individuals tended to move from the average range to the mild learning disability range. Four individuals had IQ values =<40 (floor value on WISC-III) at both assessments and therefore were not able to be rated in terms of on-going cognitive loss using these instruments.

Discussion

We report the largest neuropsychological outcome study of childhood ESES with main findings of a clinically and statistically significant decrease in Full-Scale and Performance IQ despite treatment. Around onethird (7/22) of participants in the current study showed a highly significant loss (=>12pts) in intellectual performance, evident particularly within their Performance IQ scores within a relatively short period of time (2.5 vears). These individuals tended to move from the average range to the mild learning disability range and were not distinguishable from the rest of the sample in terms of clinical history, imaging or duration of ESES. Performance IQ (PIQ) effects were more pronounced than for verbal IQ, a finding of interest as language difficulties are the most commonly reported difficulties in these children, and may reflect reduced processing speed, working memory and overall cognitive efficiency.

Whilst there have been several descriptions of the clinical and behavioural manifestations of ESES, few have used standardized tests to look at cognitive function. In a report of longitudinal neuropsychological outcome in 10 patients followed from the time of diagnosis into adulthood (mean follow-up duration of 15.6 years), six patients had an IQ <70, two had a low IQ (77 and 84), and two had an IQ within the average range (103 and 85) (Seegmuller et al., 2012). The authors also describe social, cognitive and attention difficulties in the majority of the patients. They suggest that the initial severity and duration of the acute phase regression and the duration of ESES were most predictive of poorer neuropsychological outcome. In another report it was suggested that the initial diagnosis had little prognostic significance, but that length and the age at onset of CSWS, the site of epileptiform activity and the individual neuropsychological profile are more useful for predictors of long-term cognitive outcome (Veggiotti, 2012).

Our study has limitations as a result of the retrospective nature and lack of control over timing of assessments and therapeutic interventions. We relied on a single outcome measure, *i.e.* IQ testing, and whilst the predictive utility, validity and reliability of standardized IQ tests are high (Dorris *et al.*, 2017), it would be useful for future studies to include measures of

adaptive behavior, Quality of Life and psychiatric diagnoses via standardized instruments in order to develop a comprehensive model of impact for affected children and families. The value of the current report lies in the serial neuropsychological evaluations in individuals which demonstrate the clinical impact of ESES. Controlled trials in ESES are required to help determine what might be the most effective treatments. Recently, the RESCUE ESES international European collaboration has developed such a trial. Unfortunately, due to the rarity of the condition, the challenges of delivering multi-centre international trials (see Gentry et al., 2018), and variability in resources to support the trial assessments, this study has not recruited as well as planned. It is possible that international agreements between collaborating centres to collect data and manage patients in a limited number of standardized paradigms might be the most practical way to generate sufficient clinically useful data on treatment efficacy.

The implications of our study are that whilst some children experience stagnation in development, represented by a plateau in neuropsychological test scores and a corresponding decline in age-normative standard scores, others experience a more significant decline in cognitive functions consistent with an active disease process. In this group of children with ESES with a variety of underlying aetiologies and treatments, the underlying encephalopathy resulted in an insidious decline in cognitive ability. It is therefore important that children with ESES have early and continuing neuropsychological assessment and that developmental monitoring is linked with appropriate psychological, social and psychiatric support to improve mental wellbeing and social participation. Families and educational services should also be provided with accurate information to inform prognosis and support in relation to maximizing learning potential and social integration with peers. \Box

Disclosures.

None of the authors have any conflict of interest to declare.

References

Arzimanoglou A, Cross JH. Cognitive impairment and behavioral disorders in Encephalopathy related to Status Epilepticus during slow Sleep: diagnostic assessment and outcome. *Epileptic Disord* 2019; 21(S1): S71-5.

Ballaban-gil K, Goldberg R, Moshe SL, Shinnar S. EEG evaluation and treatment of children with language regression. *Epilepsia* 1998; 39: 156. Binnie CD. Significance and management of transitory cognitive impairment due to subclinical EEG discharges in children. *Brain & Dev* 1993; 15(1): 23-30.

Bureau M. Outstanding cases of CSWS and LKS: analysis of the data sheets provided by the participants. In: *Con-tinuous spike and waves during slow sleep. Electrical status epilepticus during slow sleep.* Beaumanoir A, Bureau M, Deonna T, Mira L, Tassinari CA. London: John Libby, 1995: 213-6.

De Negri M. Electrical status epilepticus during sleep (ESES). Different clinical syndromes: towards a unifying view? *Brain* & *Dev* 1997; 19(7): 447-51.

de Menezes MS, Warner M, Shurtleff H, Rho J. Clinical characteristics of patients referred to a tertiary center for a history of acute language regression. *Epilepsia* 1998; 39: 156.

Dorris L. Predicting the IQ of young children from early developmental markers. *Eur J Paed Neurol* 2017; 21: 247.

Galanopoulou AS, Bojko A, Lado F, Moshé SL. The spectrum of neuropsychiatric abnormalities associated with electrical status epilepticus in sleep. *Brain & Dev* 2000; 22(5): 279-95.

Gentry KR, Arnup SJ, Disma N, *et al*. Enrollment challenges in multi-center, international studies: the example of the GAS trial. *Pediatric Anesthesia* 2019; 29(1): 51-8.

Goldberg RF, Ballaban-gil K, Ochoa J, *et al*. Epileptiform EEG abnormalities in autistic children with a history of language regression. *Epilepsia* 1998; 39: 156-7.

Guerrini R, Genton P, Bureau M, *et al.* Multilobar polymicrogyria, intractable drop attack seizures, and sleep-related electrical status epilepticus. *Neurology* 1998;51(2): 504-12.

Lesca G, Rudolf G, Labalme A, *et al.* Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. *Epilepsia* 2012; 53(9): 1526-38.

Margari L, Buttiglione M, Legrottaglie AR, Presicci A, Craig F, Curatolo P. Neuropsychiatric impairment in children with Continuous Spikes and Waves during slow Sleep: A long-term follow-up study. *Epilepsy Behav* 2012; 25(4): 558-62.

Morikawa T, Seino M, Osawa T, Yagi K. Five children with continuous spike-waves discharges during sleep. In: *Epileptic syndromes in infancy, childhood and adolescence*. Roger J, Dravet C, Bureau M, Dreifuss FE, Wolf P. London: John Libbey, 1985: 205-212.

Morikawa T, Seino M, Watanabe Y, Watanabe M, Yagi K. Clinical relevance of continuous spike-waves during slow wave sleep. In: *Advances in epileptology*. Manelis S, Bental E, Loeber JN, Dreifuss FE. New York: Raven Press, 1989: 359-63.

Morikawa T, Seino M, Watanabe M. Long-term outcome of CSWS syndrome. In: *Continuous spikes and waves during slow sleep. Electrical status epilepticus during slow sleep: acquired epileptic aphasia and related conditions.* Beaumanoir A, Bureau M, Deonna T, Mira L, Tassinari CA. London: John Libbey, 1995: 27-36. Patry G, Lyagoubi S, Tassinari CA. Subclinical electrical status epilepticus induced by sleep in children: a clinical and electroencephalographic study of six cases. *Arch Neurol* 1971; 24(3): 242-52.

Roulet-Perez E, Davidoff V, Desplartd PA, Deonna T. Mental and behavioural deterioration of children with epilepsy and CSWS: acquired epileptic frontal syndrome. *Dev Med Child Neurol* 1993; 35(8): 661-74.

Rousselle C, Revol M. Relations between cognitive functions and continuous spikes and waves during slow sleep. In: *Continuous spikes and waves during slow sleep*. London: John Libbey, 1995: 123-33.

Scholtes FB, Hendriks MP, Renier WO. Cognitive deterioration and electrical status epilepticus during slow sleep. *Epilepsy Behav* 2005; 6(2):167-73.

Seegmüller C, Deonna T, Mayor Dubois C, *et al.* Longterm outcome after cognitive and behavioural regression in nonlesional epilepsy with continuous spike-waves during slow-wave sleep. *Epilepsia* 2012; 53(6): 1067-76.

Tassinari CA. The problems of continuous spikes and waves during slow sleep or electrical status epilepticus during slow sleep today. In: *Continuous spikes and waves during slow sleep*. Beaumanoir A, Bureau M, Deonna T, Mira L, Tassinari CA. London: John Libbey, 1995: 251-5. Tassinari CA, Rubboli G, Volpi L, *et al.* Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia. *Clin Neurophysiol* 2000; 111: S94-102.

Tassinari CA, Terrano G, Capocchi G, *et al*. Epileptic seizures during sleep in children. In: *Epilepsy, The 8th international symposium*. Penry JK. New York: Raven Press, 1977; 345-54.

Tassinari CA, Dravet C, Roger J. Encephalopathy related to electrical status epilepticus during slow sleep. *Electroenceph clin Neurophysiol* 1977; 43: 529-30.

Tassinari CA, Rubboli G. Encephalopathy related to Status Epilepticus during slow Sleep. Current concepts and future perspectives. *Epileptic Disord* 2019; 21(S1): S82-7.

Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. *Epilepsia* 1993; 34: S37-53.

Wolff M, Johannesen KM, Hedrich UBS, *et al.* Genetic and phenotypic heterogeneity suggest therapeutic implications in *SCN2A*-related disorders. *Brain* 2017; 140: 1316-36.

Veggiotti P, Pera MC, Teutonico F, Brazzo D, Balottin U, Tassinari CA. Therapy of encephalopathy with status epilepticus during sleep (ESES/CSWS syndrome): an update. *Epileptic Disord* 2012; 14(1): 1-11.