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ABSTRACT - Aim. Benign Rolandic epilepsy (benign epilepsy with
centrotemporal spikes; recently renamed self-limited epilepsy with cen-
trotemporal spikes) is associated with widespread deficits in cognition and
behavior, suggesting abnormalities in networks that extend beyond the
centrotemporal region. To assess functional connectivity in children with
benign Rolandic epilepsy, we assessed EEG spectral power and coherence
during awake and sleep records in 27 children with centrotemporal spikes.
Coherence represents the consistency of the phase difference between
two EEG signals when compared over time and serves as a measure of syn-
chronization between two EEG signals based mainly on phase consistency.
Methods. Epochs of EEG with and without centrotemporal spikes were
compared during both waking and sleep.

Results. During the spike epochs, there was an increase in spectral power
atall frequencies, although statistical significance was seen primarily in the
delta, theta and alpha bandwidths. This increase in absolute power was
seen at all electrode sites and was similar in left and right-sided electrodes.
During centrotemporal spikes, there were significant changes in coherence
compared to the EEG segments without spikes. In the theta, alpha and beta
bandwidths, there were significant increases in coherence. The increases
in coherences were widespread and bilateral, and involved electrode pairs
outside the central and temporal regions. To determine if there was a rela-
tionship between location of the spikes and coherence values, right-sided,
left-sided and bilateral centrotemporal spikes were compared. There was
no relationship between location of the centrotemporal spikes and power
or coherence values.

Conclusion. These findings indicate that benign Rolandic epilepsy results
in generalized changes in spectral power and connectivity and raises the
suggestion that from a functional standpoint, benign Rolandic epilepsy
resembles a generalized rather than focal seizure disorder.
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Benign Rolandic epilepsy (BRE), recently renamed
self-limited epilepsy with centrotemporal spikes and
also known as benign epilepsy with centro-temporal
spikes (BECTS) is an idiopathic localization-related (i.e.
focal) electroclinical syndrome that has an annual inci-
dence of approximately 21 per 100,000 in children
younger than 15 years of age and constitutes approx-
imately 8-25% of all childhood epilepsies (Heijbel
et al., 1975). This common childhood epileptic syn-
drome is characterized by focal seizures with a seizure
semiology consisting of unilateral facial sensorimotor
symptoms, oropharyngolaryngeal symptoms, speech
arrest, and hypersalivation (Beaussart, 1972; Loiseau
and Beaussart, 1973; Beaussart and Faou, 1978; Holmes,
1992, 1993, 2000). During sleep, the seizures are often
convulsive in type. From the published ictal record-
ings, it can be inferred that at least the majority of
the generalized tonic-clonic seizures follow Rolandic
activation and are therefore secondary generalized
tonic-clonic seizures (Dalla Bernardina and Tassinari,
1975; Clemens, 2002; Panayiotopoulos et al., 2008;
Tedrus et al., 2009).

The EEG features of BRE consist of centrotemporal
spikes (CTS), focal, high-amplitude (usually > than
150 V) central or mid-temporal surface negative spike
or sharp waves of ~70-80 milliseconds with afollowing
slow wave (figure 7) (Kellaway, 2000). CTS can be uni-
lateral or bilateral and are exacerbated by drowsiness
and sleep (Holmes, 1992, 1993) (figure 2). EEG and mag-
netoencephalography (MEG) studies show a tangential
dipole in the Rolandic region with maximum negativ-
ity in the centrotemporal region and positivity in the
frontal regions (Gregory and Wong, 1992; Yoshinaga
et al., 1992) (figure 3). Spikes may often exist in cen-
tral, parietal, midline or even occipital regions which
does not preclude a diagnosis of BRE. CTS may occur

only in non-rapid eye movement (NREM) sleep and
be absent during the awake and REM states (Kellaway,
1985, 2000). If spikes are present while awake, they are
usually greatly increased in number and rate in drowsi-
ness and stage N2 of sleep (Kellaway, 1985).

While the seizure semiology and interictal and ictal
EEGs are indicative of a focal onset, there are many
features of BRE that suggest the seizures are more akin
to primary generalized epilepsy. During sleep, patients
with BRE often have bilateral, often synchronous spike
and wave discharges (Holmes, 1992). There is a strong
correlation between CTS and sleep spindles, a general-
ized physiological paroxysmal pattern during N2 sleep
(Nobili et al., 1999). EEGs with CTS can be “converted”
to generalized spike and wave activity when given
medications such as carbamazepine (Genton, 2000;
Dimova and Daskalov, 2002; Berroya et al., 2004). In
addition, generalized spike-wave discharges and CTS
may occur in the same patients (Dimova and Daskalov,
2002; Datta et al., 2019) (figure 4).

Although strongly different in terms of their electro-
clinical characteristics and pathophysiology, BRE and
primary generalized epilepsies, such as childhood
absence seizures, have some common features such
as a marked genetic predisposition, a similar age at
onset, anormal neurodevelopmental profile, a normal
EEG background activity, normal neuroimaging find-
ings, and an overall good prognosis. Some authors
have speculated about a possible clinical crossover
between these childhood epilepsies (de Melo and
Niedermeyer, 1991; Gambardella et al., 1996; Ramelli
et al., 1998; Verrotti et al., 2017a, 2017b).

In addition, children with BRE are at risk of several
behavioral and neuropsychological co-morbidities
that cannot be explained by focal pathology (Kavros
et al., 2008; Smith et al., 2015). For example, about two
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Figure 1. Example of typical CTS in the left central/temporal region.
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Figure 3. Example of tangential dipole in CTS. (A) Bipolar longitudinal montage showing phase reversal at C3. (B) The same EEG trace
as in (A) using average reference montage. Note the surface negative spike at C3 and P3 (green arrows) and simultaneous surface
positive spike at F3 (orange arrow). The negative field at C3/P3 and positive field at F3 constitutes a tangential dipole.
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Figure 4. Example of EEG with left CTS and generalized discharges.

thirds of children with BRE have attention impairments
and approximately a half have language impairments
or reading disabilities, or both (Kavros et al., 2008;
Smith et al., 2012, 2015; Vega et al., 2015).

To address the question of whether CTS are like
generalized discharges regarding their pathological
activation of neural structures, we assessed coherence
of CTS in children with BRE. Coherence is a valuable
marker of functional brain organization and connec-
tivity. On a frequency-by-frequency basis, EEG spectral
coherence represents the consistency of the phase dif-
ference between two EEG signals when compared over
time. EEG coherence is interpreted as a measure of
“coupling” and is a measure of the functional asso-
ciation between two brain regions (Thatcher et al.,
1986; 2008). High coherence values are taken as a mea-
sure of strong connectivity between the brain regions
that produce the EEG signals (Srinivasan et al., 2007).
Like many biological processes, there is likely a “sweet
spot” for coherences in that both low and high coher-
ences could be associated with cognitive dysfunction
(Kleen et al., 2011; Holmes et al., 2015).

Here we report that coherences during CTS are
quite high compared to non-CTS epochs. Remark-
ably, the increases in coherences were widespread and
involved brain regions outside the area of the CTS, rais-
ing the idea that BRE from a functional standpoint is
more like generalized than focal epilepsy.

Methods

Study design and participants

To assess functional connectivity in children with CTS,
we reviewed the electronic medical record for EEG
reports from the last five years using the key words

“benign Rolandic epilepsy”, “BRE”, “centrotemporal
spikes”, “benign epilepsy with centrotemporal spikes”
and “BECTS”. The study was approved by the Univer-
sity of Vermont Institutional Review Board. A total of
46 records were reviewed and 27 showed CTS that
were judged technically adequate for study. Of the 27
children (11 girls and 16 boys with a median age of
eightyears [range: 2-18 years]), 25 (92.6%) had an awake
recording and 24 (88.9%) had recording of drowsi-
ness/N2 sleep.

The 10-20 system of electrode placement was used
and the Pz electrode served as the reference. All EEG
analyses used the linked-ear montage. Epochs of CTS
including the spike and following slow wave were
marked and averaged over 60 seconds when possible
(figure 5). In a few cases, the record was of insuffi-
cient duration to record 60-second epochs of CTS.
In those cases, a minimum of 20 seconds of EEG
with CTS was required. For each recording epoch,
an identical duration of time without CTS was ana-
lyzed. This was done for both the awake state and
during drowsiness/N2 sleep. Twenty seconds is con-
sidered sufficient to assess quantitative EEG measures
(Mocks and Gasser, 1984). Split-half reliability and the
ratio of variance between the even and odd seconds
of the time series of selected digital EEG (variance
sum of the square of the deviation of each time
point from the mean of the time points) were calcu-
lated for each channel and a reliability of >0.95 was
required before analysis. We also performed “test re-
test” measures on all EEG data. Test re-test reliability
uses the same equations used for split-half reliabil-
ity but is the ratio of the variance of the first half
of the EEG selections vs the variance of the second
half of the EEG selections. A test re-test reliability of
>0.90 was required before EEG data was statistically
analyzed.
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Figure 5. Example of how CTS were quantified. Pink shaded areas included the spike and following slow wave. Equal duration events

without spikes were randomly selected for comparison.

EEGs were analyzed using NeuroGuide (Applied Neu-
roscience, Inc., Largo, FL). Frequencies from 0-30 Hz
were analyzed using a Fast Fourier Transform (FTT)
with the following parameters: epoch = 2 seconds at
a sample rate of 128 samples/second = 256 digital time
points and a frequency range from 0.5 to 30 Hz at
a resolution of 0.5 Hz using a cosign taper window.
The sliding window of the 256-point FFT cross-spectral
matrix was computed advancing in 64-point steps (75%
overlap) the edited epochs. FFT absolute and relative
power for each of the 19 electrodes comprised delta
(A) (0-4 Hz), theta (8) (4-8 Hz), alpha (o) (8-12 Hz), o1
(8-10 Hz), 2 (10-12 Hz), beta (B) (12-25 Hz), high (1) B
(25-30 Hz), B1 (12-15 Hz), B2 (15-18 Hz), B3 (18-25 Hz),
v (30-40 Hz), high (1) vy (40-50 Hz), y1 (30-35 Hz), and
v2 (35-40 Hz). FFT coherences for each of the 171 elec-
trode pairs was obtained with both intra-hemispheric
and inter-hemispheric pair-wise combinations of elec-
trodes evaluated.

Coherence represents the consistency of the phase
difference between two EEG signals when compared
over time and serves as a measure of synchronization
between two EEG signals based mainly on phase
consistency. Two signals may have different phases,
but high coherence occurs when this phase difference
tends to remain constant. Coherences vary from 0,
where there is no consistency between phases of two
EEG signals, to 1, where there is perfect alignment
of phase.

Coherence was defined as:

(Gv (1))

Coherence (f) = (G (F) Gy (F)

Where G,y (f) is the cross-power spectral density (the
power distribution of EEG series in the frequency

domain) and Gxx(f) and Gyy(f) are the respective
autopower spectral densities. FFT coherence for each
electrode pair was obtained. Intra-hemispheric and
inter-hemispheric pair-wise combinations of elec-
trodes were evaluated. The method used to calculate
coherence has been reported in other studies (Mott et
al., 2019; Burroughs et al., 2014; Buckley et al., 2015).
Volume conduction contributes to coherence
(Thatcher et al., 2008; Thatcher, 2008, 2012a). The
cross-spectrum is the sum of the in-phase potentials
(i.e. cospectrum) and out-of-phase potentials (i.e.
quadspectrum). The in-phase component (instanta-
neous coherence) contains volume conduction and
the synchronous activation of local neural generators.
The out-of-phase component (lagged coherence)
contains the network or connectivity contributions
from locations distant to a given source. Since the
same method was used for the epochs with and
without CTS, volume conduction would have been
factored in epochs with and without CTS.

Statistical analysis

The paired-t test was used to compare averaged EEG
measures across epochs in EEGs with and without CTS.
Changes in absolute spectral power and coherences
were calculated across the awake and sleep states for
each of the 27 children. A false detection rate was
assessed using the Holm-Sidak test with an alpha of
0.05 and all p values reported were adjusted for false
detection. Data are presented as mean + standard
error of the mean. The p values are shown in two ways:
- electrode maps with color and thickness of the
lines connecting electrodes, reflecting direction of
the differences between groups and the degree
of significance;

Epileptic Disord, Vol. 21, No. 6, December 2019
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Table 1. Location of CTS.

Location of CTS Number (Percentage)
L Central 10/27 (37%)

R Central 7127 (25.9%)

L Mid-temporal 3/27 (11/1%)

R Mid-temporal 1127 (3.7%)

Bi-central 6/27 (18.5%)
Bi-mid-temporal 0

— and p value heat maps with degree of significance
in selected electrode pairs, color-coded from all 171
electrode pairs. Although data was reviewed from
171 electrode pairs, selected electrodes were chosen
for illustration.

Results

All of the records had a sufficient number of CTS to
record a minimum of 20 seconds of CTS and non-CTS
epochs. The location of the spikes is shown in table 7.
A tangential dipole was found in 25/27 (92.6%). Two
children had CTS and generalized spike-wave activity.
During the CTS, there was an increase in spectral
power at all frequencies (figure 6) although statisti-
cal significance was seen primarily in the A, ®, and «
bandwidths (figure 7). This increase in absolute power
was seen at all electrode sites and was similar in left
and right-sided electrodes. When relative power was
assessed, there was a decrease in A and vy frequencies
while increases were seen in the ® and o bandwidths
(figure 8).

During CTS, there were significant changes in coher-
ence compared to the EEG segments without spikes
(figures 9-11). Figure 9 shows p values for selected elec-
trode pairs and figures 710 and 17 shows a heatmap of p
values for all 171 electrode pairs in both hemispheres.

-140.0 0.0 140.0

FFT Absolute Power Differences (LV)

Figure 6. FFT absolute power differences in wV at various bandwidths during epochs of CTS versus non-CTS epochs.
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FFT Relative Power Percent Differences (%)

Figure 7. FFT relative power percent differences (%) during epochs of CTS versus non-CTS epochs.

In the A bandwidth, coherences were decreased dur-
ing the CTS (figure 9), although with the corrected
p values for false detection, few electrode pairs dif-
fered significantly. In the ©, a and B bandwidths,
significant increases in coherence were noted. The
increases in coherences were widespread and bilat-
eral, and involved electrode pairs outside the central
and temporal regions. To determine if there was a rela-
tionship between location of the spikes and coherence
values, right-sided, left-sided and bilateral CTS were
compared. There was no relationship between loca-
tion of the CTS and coherence values (data not shown).

Discussion

The major finding in this analysis is that EEGs from
children with CTS have marked increases in coher-
ence during spikes compared to periods without CTS
both during the awake and sleep states. These marked
increases in coherences involved multiple frequencies

and extended beyond the centrotemporal region. In
addition, widespread changes in power were also seen
during the CTS.

CTS are transitory events of a synchronous discharge
of neurons, producing high power and wideband
frequencies with a succession of action potentials
(figure 1) (Prince and Connors, 1986; de Curtis and
Avanzini, 2001). The hallmark of this synchronous
discharge of neurons in the epileptic focus is the parox-
ysmal depolarization shift (PDS) which is a large and
sustained depolarization of the neuron (Matsumoto
and Ajmone-Marsan, 1964; Ayala et al., 1973). During
a PDS, the cell membrane near the soma undergoes a
high-voltage (approximately 10 to 15 mV) and long (100
to 200 mseconds) depolarization and has the effect of
generating a train of action potentials that are con-
ducted away from the soma along the axon of the
neuron. The PDS is followed by a large hyperpolar-
ization which serves to limit the duration of interictal
paroxysms. Time-frequency analysis reveals large high-
frequency (80-500 Hz) power changes associated with

Epileptic Disord, Vol. 21, No. 6, December 2019

573



R. Ghantasala, G.L. Holmes

A©a BTy Tyal o2 B1p2 91 2
Fp1 [
Fp2

Figure 8. Heat map of p value significance corrected for false
detection rate for power at each electrode during CTS and during
comparable periods without CTS.

IS (Kobayashi et al., 2009; Jacobs et al., 2016). During
the slow wave of the spike and wave complex, there
is a decrease in high frequency oscillations (>100 Hz)
(Urrestarazu et al., 2006; Kobayashi et al., 2009).

CTS were associated with widespread increases in
power in all brain regions compared to comparable
periods without spikes (Adebimpe et al., 2015).

As a measure of “coupling” oscillations, coherence
provides a dynamic link between brain areas required
for the integration of distributed information (Varela
et al., 2001; Thatcher, 2012b) and high coherence val-
ues indicative of strong connectivity between brain
regions that generative the EEG activity (Srinivasan et
al.,2007). Decreased coherences in neural circuits have
been associated with cognitive and behavioral abnor-
malities, including rodent models of stress (Jacinto
et al., 2013; Oliveira et al., 2013) and schizophrenia
(Sigurdsson et al., 2010) and human conditions such
as Alzheimer’s disease (Besthorn et al., 1994), intellec-
tual impairment (Thatcher et al., 2005), attention-deficit
disorder and reading difficulties (Barry et al., 2009) and
autism (Coben et al., 2008; Mathewson et al., 2012;
Khan et al., 2013). However, neuronal synchrony in
the brain is finely tuned and it is likely that functional
“over connectivity” may be as detrimental as “under-
connectivity”, as anetwork that is over-connected may
not be able to adapt to increased cognitive demand
(Supekar et al., 2013).

There is now considerable evidence that the CTS,
independent of seizures, plays a role in cognitive co-
morbidities in BRE. Patients with incidental CTS may
experience epilepsy comorbidities, despite not hav-
ing seizures (Danielsson and Petermann, 2009). There
is a correlation between number of CTS and cog-
nitive function. Yan et al. (2017) found that children

Total

p<0.05

p<0.025

Figure 9. Coherences between selected electrode pairs during and between CTS during the awake and sleep states along with the
combined data. Blue lines indicate p values that show significantly reduced coherence during CTS than between CTS while red lines
indicate increased coherences. The significance of the p value is reflected by the thickness of the lines.
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Figure 10. Heat map of coherence values across frequencies and electrode pairs after false detection rate for left hemisphere.

with a high spike-wave index had lower full intel-
ligence quotient (FIQ), verbal intelligence quotient
(VIQ), and performance intelligence quotient (PIQ)
than children with a lower spike-wave index and there
was a negative correlation between the FIQ, VIQ,
PIQ, and spike-wave index that was not related to
age, age at onset, disease course, years of educa-
tion, and total number of seizures. Finally, supporting
this idea is a distinct relationship between CTS and
neuropsychological performance, with children hav-
ing better neuropsychological performance following
CTS remission (Baglietto et al., 2001).

It is tempting to speculate that tangential dipole fre-
quently seen in CTS in children with BRE may have
a role in the excessive connectivity between disperse
neuronal ensembles. In this study, most children had
a tangential dipole identified and we therefore could

notcompare power spectraand coherence datain chil-
drenwith and without dipoles. Future studies will need
to incorporate similar quantitative measures of other
types of interictal spikes in children.

Although this study dealt solely with CTS in BRE, there
is evidence from both functional MRI and EEG studies
that other types of interictal spikes result in changes
in connectivity that are not spatially restricted to the
epileptogenic focus. For example, interictal spikes in
patients with temporal lobe epilepsy involve other
brain regions, most notably the contralateral tempo-
ral lobe, frontal lobe and other extratemporal regions
(Mankinen et al., 2012; Coito et al., 2015; Burianova et
al., 2017; Tong et al., 2019). However, compared to CTS,
temporal lobe spikes predominately effect function
ipsilateral to the spikes. Likewise, the neuropsycho-
logical profile of patients with temporal lobe epilepsy

Epileptic Disord, Vol. 21, No. 6, December 2019
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Figure 11. Heat map of coherence values across frequencies and electrode pairs after false detection rate for right hemisphere.

is usually specific to the function of the region from
which the interictal spikes are generated. Patients with
interictal spikes in the language-dominant temporal
lobe often have difficulties with language and verbal
memory deficits, whereas interictal spikes in the non-
dominant hemisphere are associated with impaired
spatial memory (Bell et al., 2011; Allone et al., 2017).
The cognitive deficits in temporal lobe epilepsy appear
to be more modality-specific and limited compared to
the widespread deficits seen in children with BRE.

Extrapolating information from interictal EEG abnor-
malities in BRE to behavior and cognitive difficulties
is clearly speculative. However, it is plausible that the
highly coherent network activity during CTS may have
a causative role in the widespread behavior and cog-
nitive deficits seen in this disorder. An intermittent
diffuse hyper-excitable network in BRE would be con-
sistent with the broad nature of the cognitive and

behavioral abnormalities seen in children with this
syndrome. While it is difficult to see how brief peri-
ods of increased coherence during CTS could lead
to behavioral and cognitive disorders, the finding that
these deficits resolve following the resolution of CTS
suggests that momentary disruption can have pro-
nounced effects on brain function. O
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