JLE

Virologie

MENU

Viral oncogenesis and genomic instability: the centr(osom)al connection Volume 23, issue 5, Septembre-Octobre 2019

  • [1] Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964;28:702-703.
  • [2] IARC monographs on the evaluation of carcinogenic risks to humans, volume 100 B, biological agents. In: International Agency for Research on Cancer, Weltgesundheitsorganisation, eds. IARC; 2012. [this publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 24 February-03 March 2009]
  • [3] De Martel C., Ferlay J., Franceschi S. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607-615.
  • [4] Feng H., Shuda M., Chang Y., Moore P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096-1100.
  • [5] Choo Q.-L., Kuo G., Weiner A.J. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244:359-362.
  • [6] Poiesz B.J., Ruscetti F.W., Gazdar A.F., Bunn P.A., Minna J.D., Gallo R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77:7415-7419.
  • [7] Pipas J.M. DNA tumor viruses and their contributions to molecular biology. J Virol. 2019;93:e01524-18. 10.1128/JVI.01524-18
  • [8] Conduit P.T., Wainman A., Raff J.W. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. 2015;16:611-624.
  • [9] Yasunaga J., Jeang K.-T. Viral transformation and aneuploidy. Environ Mol Mutagen. 2009;50:733-740.
  • [10] Fu J., Glover D.M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2012;2:120104-120104.
  • [11] Lawo S., Hasegan M., Gupta G.D., Pelletier L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol. 2012;14:1148-1158.
  • [12] Sonnen K.F., Schermelleh L., Leonhardt H., Nigg E.A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open. 2012;1:965-976.
  • [13] Okuda M., Horn H.F., Tarapore P. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103:127-140.
  • [14] Ma Z., Kanai M., Kawamura K., Kaibuchi K., Ye K., Fukasawa K. Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol. 2006;26:9016-9034.
  • [15] Gönczy P., Hatzopoulos G.N. Centriole assembly at a glance. J Cell Sci. 2019;132:jcs228833.
  • [16] Avidor-Reiss T., Gopalakrishnan J. Building a centriole. Curr Opin Cell Biol. 2013;25:72-77.
  • [17] Li J., Kim S., Kobayashi T. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep. 2012;13:547-553.
  • [18] Hori A., Toda T. Regulation of centriolar satellite integrity and its physiology. Cell Mol Life Sci. 2017;74:213-229.
  • [19] Mitelman database of chromosome aberrations and gene fusions in cancer. In: Mitelman F., Johansson B., Mertens F., eds. 2018. [date unknown]http://cgap.nci.nih.gov/Chromosomes/Mitelman
  • [20] Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121:1.
  • [21] Zyss D., Gergely F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 2009;19:334-346.
  • [22] Levine M.S., Bakker B., Boeckx B. Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell. 2017;40:313-322.e5.
  • [23] Marthiens V., Piel M., Basto R. Never tear us apart – the importance of centrosome clustering. J Cell Sci. 2012;125:3281-3292.
  • [24] Milunović-Jevtić A., Mooney P., Sulerud T., Bisht J., Gatlin J. Centrosomal clustering contributes to chromosomal instability and cancer. Curr Opin Biotechnol. 2016;40:113-118.
  • [25] Cunha-Ferreira I., Rodrigues-Martins A., Bento I. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol. 2009;19:43-49.
  • [26] Marthiens V., Rujano M.A., Pennetier C., Tessier S., Paul-Gilloteaux P., Basto R. Centrosome amplification causes microcephaly. Nat Cell Biol. 2013;15:731-740.
  • [27] Habedanck R., Stierhof Y.-D., Wilkinson C.J., Nigg E.A. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol. 2005;7:1140-1146.
  • [28] Karki M., Keyhaninejad N., Shuster C.B. Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay. Nat Commun. 2017;8:15803.
  • [29] Meraldi P., Honda R., Nigg A.E. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 2002;21:483-492.
  • [30] Fukasawa K., Choi T., Kuriyama R., Rulong S., Vande Woude G.F. Abnormal centrosome amplification in the absence of p53. Science. 1996;271:1744-1747.
  • [31] Tarapore P., Horn H.F., Tokuyama Y., Fukasawa K. Direct regulation of the centrosome duplication cycle by the p53-p21 pathway. Oncogene. 2001;20:3173-3184. Waf1/Cip1
  • [32] Cuomo M.E., Knebel A., Morrice N., Paterson H., Cohen P., Mittnacht S. p53-driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nat Cell Biol. 2008;10:723-730.
  • [33] Holland A.J., Fachinetti D., Zhu Q. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 2012;26:2684-2689.
  • [34] Fava L.L., Schuler F., Sladky V. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 2017;31:34-45.
  • [35] Coelho P.A., Bury L., Shahbazi M.N. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol. 2015;5:150209.
  • [36] Serçin Ö., Larsimont J.-C., Karambelas A.E. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol. 2016;18:100-110.
  • [37] Duensing S., Lee L.Y., Duensing A. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A. 2000;97:10002-10007.
  • [38] Skyldberg B., Fujioka K., Hellström A.-C., Sylvén L., Moberger B., Auer G. Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol. 2001;14:279.
  • [39] Duensing S., Duensing A., Lee D.C. Cyclin-dependent kinase inhibitor indirubin-3′-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies. Oncogene. 2004;23:8206-8215.
  • [40] Duensing A., Liu Y., Tseng M., Malumbres M., Barbacid M., Duensing S. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene. 2006;25:2943.
  • [41] Duensing A., Liu Y., Perdreau S.A., Kleylein-Sohn J., Nigg E.A., Duensing S. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene. 2007;26:6280-6288.
  • [42] Duensing A., Liu Y., Spardy N. RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene. 2007;26:215-223.
  • [43] Korzeniewski N., Treat B., Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011;10:61.
  • [44] Kwun H.J., Wendzicki J.A., Shuda Y., Moore P.S., Chang Y. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting. Oncogene. 2017;36:6784.
  • [45] Martínez-Noël G., Luck K., Kühnle S. Network analysis of UBE3A/E6AP-associated proteins provides connections to several distinct cellular processes. J Mol Biol. 2018;430:1024-1050.
  • [46] Nguyen C.L., Eichwald C., Nibert M.L., Munger K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component-tubulin. J Virol. 2007;81:13533-13543.
  • [47] Afonso P.V., Zamborlini A., Saïb A., Mahieux R. Centrosome and retroviruses: the dangerous liaisons. Retrovirology. 2007;4:27.
  • [48] Nitta T., Kanai M., Sugihara E. Centrosome amplification in adult T-cell leukemia and human T-cell leukemia virus type 1 Tax-induced human T cells. Cancer Sci. 2006;97:836-841.
  • [49] Peloponese J.-M., Haller K., Miyazato A., Jeang K.-T. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc Natl Acad Sci U S A. 2005;102:18974-18979.
  • [50] Ching Y.-P., Chan S.-F., Jeang K.-T., Jin D.-Y. The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication. Nat Cell Biol. 2006;8:717-724.
  • [51] Forgues M., Difilippantonio M.J., Linke S.P. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol. 2003;23:5282-5292.
  • [52] Yun C., Cho H., Kim S.-J. Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Mol Cancer Res MCR. 2004;2:159-169. via
  • [53] Wang L.H.-C., Huang W., Lai M.-D., Su I.-J. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus Pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis. 2012;33:466-472.
  • [54] Jin D.-Y., Spencer F., Jeang K.-T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell. 1998;93:81-91.
  • [55] Swanton C., Mann D.J., Fleckenstein B., Neipel F., Peters G., Jones N. Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature. 1997;390:184-187.
  • [56] Verschuren E.W., Klefstrom J., Evan G.I., Jones N. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss and . Cancer Cell. 2002;2:229-241. in vitroin vivo
  • [57] Verschuren E.W., Hodgson J.G., Gray J.W., Kogan S., Jones N., Evan G.I. The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res. 2004;64:581-589.
  • [58] Koopal S., Furuhjelm J.H., Järviluoma A. Viral oncogene-induced DNA damage response is activated in kaposi sarcoma tumorigenesis. PLoS Pathog. 2007;3:e140.
  • [59] Pan H., Zhou F., Gao S.-J. Kaposi's sarcoma-associated herpesvirus induction of chromosome instability in primary human endothelial cells. Cancer Res. 2004;64:4064-4068.
  • [60] Lane D.P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261-263.
  • [61] Linzer D.I.H., Levine A.J. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43-52.
  • [62] Tornesello M.L., Annunziata C., Tornesello A.L., Buonaguro L., Buonaguro F.M. Human oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel). 2018;10:213.
  • [63] Riley R.R., Duensing S., Brake T., Münger K., Lambert P.F., Arbeit J.M. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003;63:4862-4871.
  • [64] Budhu A.S., Wang X.W. Loading and unloading. Cell Cycle. 2005;4:1510-1514.
  • [65] Keryer G., Di Fiore B., Celati C. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell. 2003;14:4260-4271.
  • [66] Ciciarello M., Mangiacasale R., Lavia P. Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci. 2007;64:1891-1914.
  • [67] Di Fiore B., Ciciarello M., Mangiacasale R. Mammalian RanBP1 regulates centrosome cohesion during mitosis. J Cell Sci. 2003;116:3399-3411.
  • [68] Luca A.D., Mangiacasale R., Severino A. E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. Cancer Res. 2003;63:1430-1437.
  • [69] Lavia P. The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Res. 2016;24:53-65.
  • [70] Gill M.B., Kutok J.L., Fingeroth J.D. Epstein-Barr virus thymidine kinase is a centrosomal resident precisely localized to the periphery of centrioles. J Virol. 2007;81:6523-6535.
  • [71] Shumilov A., Tsai M.-H., Schlosser Y.T. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability. Nat Commun. 2017;8:14257.
  • [72] Tsai K., Chan L., Gibeault R. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol. 2014;88:14350-14363.
  • [73] Baek K.-H., Park H.-Y., Kang C.-M. Overexpression of hepatitis C virus NS5A protein induces chromosome instability mitotic cell cycle dysregulation. J Mol Biol. 2006;359:22-34. via
  • [74] Kwon M., Godinho S.A., Chandhok N.S. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008;22:2189-2203.
  • [75] Leber B., Maier B., Fuchs F. Proteins required for centrosome clustering in cancer cells. Sci Transl Med. 2010;2:33ra38-33ra38.
  • [76] Quintyne N.J., Reing J.E., Hoffelder D.R., Gollin S.M., Saunders W.S. Spindle multipolarity is prevented by centrosomal clustering. Science. 2005;307:127-129.
  • [77] Kwon M., Godinho S.A., Chandhok N.S. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008;22:2189-2203.
  • [78] Ying B., Wold W.S.M. Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology. 2003;313:224-234.
  • [79] Cotsiki M., Lock R.L., Cheng Y. Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A. 2004;101:947-952.
  • [80] Patel D., McCance D.J. Compromised spindle assembly checkpoint due to altered expression of Ubch10 and Cdc20 in human papillomavirus type 16 E6- and E7-expressing keratinocytes. J Virol. 2010;84:10956-10964.
  • [81] Chae S., Ji J.-H., Kwon S.-H. HBxAPα/Rsf-1-mediated HBx-hBubR1 interactions regulate the mitotic spindle checkpoint and chromosome instability. Carcinogenesis. 2013;34:1680-1688.
  • [82] Tan C.L., Teissier S., Gunaratne J., Quek L.S., Bellanger S. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy. Cell Cycle. 2015;14:1459-1470.
  • [83] Shirnekhi H.K., Kelley E.P., DeLuca J.G., Herman J.A. Spindle assembly checkpoint signaling and sister chromatid cohesion are disrupted by HPV E6-mediated transformation. Mol Biol Cell. 2017;28:2035-2041.
  • [84] Arquint C., Gabryjonczyk A.-M., Nigg E.A. Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130464-20130464.
  • [85] Löffler H., Fechter A., Matuszewska M. Cep63 Recruits Cdk1 to the centrosome: implications for regulation of mitotic entry, centrosome amplification, and genome maintenance. Cancer Res. 2011;71:2129-2139.
  • [86] Dutertre S. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci. 2004;117:2523-2531.
  • [87] Ciccia A., Elledge S.J. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179-204.
  • [88] Bakkenist C.J., Kastan M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499.
  • [89] Zhang S., Hemmerich P., Grosse F. Centrosomal localization of DNA damage checkpoint proteins. J Cell Biochem. 2007;101:451-465.
  • [90] Oricchio E., Saladino C., Iacovelli S., Soddu S., Cundari E. ATM is activated by default in mitosis, localizes at centrosomes and monitors mitotic spindle integrity. Cell Cycle. 2006;5:88-92.
  • [91] Wang C.-Y., Huang E.Y.-H., Huang S.-C., Chung B.-C. DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene. 2015;34:1263-1269.
  • [92] Löffler H., Bochtler T., Fritz B. DNA damage-induced accumulation of centrosomal Chk1 contributes to its checkpoint function. Cell Cycle. 2007;6:2541-2548.
  • [93] Dutton A., Woodman C.B., Chukwuma M.B. Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood. 2007;109:2597-2603.
  • [94] Dayaram T., Lemoine F.J., Donehower L.A., Marriott S.J. Activation of WIP1 phosphatase by HTLV-1 Tax mitigates the cellular response to DNA damage. PLoS One. 2013;8:e55989.
  • [95] Choudhuri T., Verma S.C., Lan K., Murakami M., Robertson E.S. The ATM/ATR signaling effector Chk2 is targeted by Epstein-Barr virus nuclear antigen 3C to release the G2/M cell cycle block. J Virol. 2007;81:6718-6730.
  • [96] Gupta S.K., Guo X., Durkin S.S., Fryrear K.F., Ward M.D., Semmes O.J. Human T-cell leukemia virus type 1 tax oncoprotein prevents DNA damage-induced chromatin egress of hyperphosphorylated Chk2. J Biol Chem. 2007;282:29431-29440.
  • [97] Robinson H.M.R., Black E.J., Brown R., Gillespie D.A.F. DNA mismatch repair and Chk1-dependent centrosome amplification in response to DNA alkylation damage. Cell Cycle. 2007;6:982-992.
  • [98] Antonczak A.K., Mullee L.I., Wang Y. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response. Oncogene. 2016;35:2003.
  • [99] Inanç B., Dodson H., Morrison C.G. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell. 2010;21:3866-3877.
  • [100] Conroy P.C., Saladino C., Dantas T.J., Lalor P., Dockery P., Morrison C.G. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle. 2012;11:3769-3778.
  • [101] Lindgren T., Stigbrand T., Johansson L., Riklund K., Eriksson D. Alterations in gene expression during radiation-induced mitotic catastrophe in HeLa Hep2 cells. Anticancer Res. 2014;34:3875-3880.
  • [102] Mussman J.G., Horn H.F., Carroll P.E. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene. 2000;19:1635-1646.
  • [103] Shinmura K., Bennett R.A., Tarapore P., Fukasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene. 2007;26:2939-2944.
  • [104] Löffler H., Fechter A., Liu F.Y., Poppelreuther S., Krämer A. DNA damage-induced centrosome amplification occurs excessive formation of centriolar satellites. Oncogene. 2013;32:2963-2972. via
  • [105] Smith E., Dejsuphong D., Balestrini A. An ATM- and ATR-dependent checkpoint inactivates spindle assembly by targeting CEP63. Nat Cell Biol. 2009;11:278-285.
  • [106] Lai W.L., Hung W.Y., Ching Y.P. The tumor suppressor, TAX1BP2, is a novel substrate of ATM kinase. Oncogene. 2014;33:5303-5309.
  • [107] Wang M., Knudsen B.S., Nagle R.B., Rogers G.C., Cress A.E. A method of quantifying centrosomes at the single-cell level in human normal and cancer tissue. Mol Biol Cell. 2019;30:811-819.
  • [108] Firat-Karalar E.N., Rauniyar N., Yates J.R., Stearns T. Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol. 2014;24:664-670.