JLE

Virologie

MENU

Caractérisation et impact du microbiote bactérien respiratoire sur les maladies virales Volume 22, issue 3, Mai-Juin 2018

  • [1] Iwai S., Fei M., Huang D. Oral and airway microbiota in HIV-infected pneumonia patients. J Clin Microbiol. 2012;50:2995-3002.
  • [2] Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biol. 2016;14:e1002533.
  • [3] Segal L.N., Blaser M.J. A brave new world : the lung microbiota in an era of change. Ann Am Thorac Soc. 2014;11 Suppl 1:S21-S27.
  • [4] Di Bella J.M., Bao Y., Gloor G.B., Burton J.P., Reid G. High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods. 2013;95:401-414.
  • [5] Muyzer G., Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek. 1998;73:127-141.
  • [6] Liu W.T., Marsh T.L., Cheng H., Forney L.J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997;63:4516-4522.
  • [7] Woese C.R., Fox G.E. Phylogenetic structure of the prokaryotic domain : the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74:5088-5090.
  • [8] Hamady M., Walker J.J., Harris J.K., Gold N.J., Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods. 2008;5:235-237.
  • [9] Schloss P.D., Westcott S.L., Ryabin T. Introducing mothur : open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537-7541.
  • [10] Caporaso J.G., Kuczynski J., Stombaugh J. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-336.
  • [11] Ahn J.-H., Kim B.-Y., Song J., Weon H.-Y. Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J Microbiol Seoul Korea. 2012;50:1071-1074.
  • [12] Albertsen M., Karst S.M., Ziegler A.S., Kirkegaard R.H., Nielsen P.H. Back to Basics-The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PloS One. 2015;10:e0132783.
  • [13] Bakker M.G., Tu Z.J., Bradeen J.M., Kinkel L.L. Implications of pyrosequencing error correction for biological data interpretation. PloS One. 2012;7:e44357.
  • [14] Leung R.K.-K., Zhou J.-W., Guan W. Modulation of potential respiratory pathogens by pH1N1 viral infection. Raoult D, éditeur. Clin Microbiol Infect. 2013;19:930-935.
  • [15] Sze M.A., Hogg J.C., Sin D.D. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:229-238.
  • [16] Engel P., Stepanauskas R., Moran N.A. Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. Richardson PM, éditeur. PLoS Genet. 2014;10:e1004596.
  • [17] Erb-Downward J.R., Thompson D.L., Han M.K. Analysis of the Lung Microbiome in the « Healthy » Smoker and in COPD. Bereswill S, éditeur. PLoS ONE. 2011;6:e16384.
  • [18] Huse S.M., Ye Y., Zhou Y., Fodor A.A. A core human microbiome as viewed through 16S rRNA sequence clusters. PloS One. 2012;7:e34242.
  • [19] Chu D.M., Ma J., Prince A.L. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314-326.
  • [20] Biesbroek G., Tsivtsivadze E., Sanders E.A.M. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283-1292.
  • [21] Teo S.M., Mok D., Pham K. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704-715.
  • [22] Perez G.F., Pérez-Losada M., Isaza N. Nasopharyngeal microbiome in premature infants and stability during rhinovirus infection. J Investig Med. 2017;65:984-990.
  • [23] Lynch S.V. Viruses and microbiome alterations. Ann Am Thorac Soc. 2014;11 Suppl 1:S57-S60.
  • [24] The NIH HMP Working Group, Peterson J., Garges S., Giovanni M. The NIH Human Microbiome Project. Genome Res. 2009;19:2317-2323.
  • [25] Jain P., Jain A., Prakash S. Prevalence and genotypic characterization of human parvovirus B19 in children with hemato-oncological disorders in North India. J Med Virol. 2015;87:303-309.
  • [26] Wang J., Li F., Sun R. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun. 2013;4.
  • [27] Abt M.C., Osborne L.C., Monticelli L.A. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity. 2012;37:158-170.
  • [28] Wu S., Jiang Z.-Y., Sun Y.-F. Microbiota Regulates the TLR7 Signaling Pathway Against Respiratory Tract Influenza A Virus Infection. Curr Microbiol. 2013;67:414-422.
  • [29] Ichinohe T., Pang I.K., Kumamoto Y. Microbiota regulates immune defense against respiratory tract influenza A virus infection. PNAS USA. 2011;108:5354-5359.
  • [30] Koenig J.E., Spor A., Scalfone N. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4578-4585.
  • [31] Planer J.D., Peng Y., Kau A.L. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534:263-266.
  • [32] Bokulich N.A., Chung J., Battaglia T. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.
  • [33] Yatsunenko T., Rey F.E., Manary M.J. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-227.
  • [34] Desai M.S., Seekatz A.M., Koropatkin N.M. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167:1339-53.e21.
  • [35] Furusawa Y., Obata Y., Fukuda S. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446-450.
  • [36] Arpaia N., Campbell C., Fan X. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-455.
  • [37] Beura L.K., Hamilton S.E., Bi K. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512-516.
  • [38] McCullers J.A., Bartmess K.C. Role of Neuraminidase in Lethal Synergism between Influenza Virus and . J Infect Dis. 2003;187:1000-1009. Streptococcus pneumoniae
  • [39] McCullers J.A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol. 2014;12:252-262.
  • [40] Pichon M., Lina B., Josset L. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection. Vaccines. 2017;5.
  • [41] de Steenhuijsen Piters W.A.A., Heinonen S., Hasrat R. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. Am J Respir Crit Care Med. 2016;194:1104-1115.
  • [42] Nembrini C., Sichelstiel A., Kisielow J. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax. 2011;66:755-763.
  • [43] Bruzzese E., Raia V., Spagnuolo M.I. Effect of Lactobacillus GG supplementation on pulmonary exacerbations in patients with cystic fibrosis : a pilot study. Clin Nutr. 2007;26:322-328.
  • [44] Tuvim M.J., Evans S.E., Clement C.G. Augmented lung inflammation protects against influenza A pneumonia. PloS One. 2009;4:e4176.
  • [45] Monneret G., Venet F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytometry B Clin Cytom. 2016;90:376-386.
  • [46] Drake M.G., Evans S.E., Dickey B.F., Fryer A.D., Jacoby D.B. Toll-like receptor-2/6 and Toll-like receptor-9 agonists suppress viral replication but not airway hyperreactivity in guinea pigs. Am J Respir Cell Mol Biol. 2013;48:790-796.
  • [47] Norton E.B., Clements J.D., Voss T.G., Cárdenas-Freytag L. Prophylactic administration of bacterially derived immunomodulators improves the outcome of influenza virus infection in a murine model. J Virol. 2010;84:2983-2995.
  • [48] Williams A.E., Edwards L., Humphreys I.R. Innate imprinting by the modified heat-labile toxin of Escherichia coli (LTK63) provides generic protection against lung infectious disease. J Immunol. 2004;173:7435-7443.
  • [49] Chiba E., Tomosada Y., Vizoso-Pinto M.G. Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int Immunopharmacol. 2013;17:373-382.
  • [50] Arslanoglu S., Moro G.E., Boehm G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr. 2007;137:2420-2424.
  • [51] Luoto R., Ruuskanen O., Waris M. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants : a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2014;133:405-413.
  • [52] Rautava S., Salminen S., Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy ? a randomised, double-blind, placebo-controlled study. Br J Nutr. 2009;101:1722.
  • [53] Taipale T., Pienihekkinen K., Isolauri E. Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy. Br J Nutr. 2011;105:409-416.
  • [54] Maldonado J., Cañabate F., Sempere L. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 2012;54:55-61.
  • [55] Mayer-Hamblett N., Rosenfeld M., Gibson R.L. Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes. Am J Respir Crit Care Med. 2014;190:289-297.
  • [56] Verkaik N.J., Nguyen D.T., de Vogel C.P. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect. 2011;17:1840-1844.
  • [57] Langevin S., Pichon M., Smith E. Early nasopharyngeal microbial signature associated with severe influenza in children : a retrospective pilot study. Journal of General Virology. 2017;98. doi: 10.1099/jgv.0.000920
  • [58] Biesbroek G., Wang X., Keijser B.J.F. Seven-valent pneumococcal conjugate vaccine and nasopharyngeal microbiota in healthy children. Emerg Infect Dis. 2014;20:201-210.
  • [59] Tarabichi Y., Li K., Hu S. The administration of intranasal live attenuated influenza vaccine induces changes in the nasal microbiota and nasal epithelium gene expression profiles. Microbiome. 2015;3:74.
  • [60] Baker G.C., Smith J.J., Cowan D.A. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55:541-555.