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ABSTRACT

Objective. Interictal epileptiform discharges on EEG are integral to diagnosing
epilepsy. However, EEGs are interpreted by readers with and without specialty
training, and there is no accepted method to assess skill in interpretation. We
aimed to develop a test to quantify IED recognition skills.

Methods. A total of 13,262 candidate IEDs were selected from EEGs and scored
by eight fellowship-trained reviewers to establish a gold standard. An online
test was developed to assess how well readers with different training levels
could distinguish candidate waveforms. Sensitivity, false positive rate and
calibration were calculated for each reader. A simple mathematical model was
developed to estimate each reader’s skill and threshold in identifying an IED,
and to develop receiver operating characteristics curves for each reader. We
investigated the number of IEDs needed to measure skill level with acceptable
precision.

Results. Twenty-nine raters completed the test; nine experts, seven experi-
enced non-experts and thirteen novices. Median calibration errors for experts,
experienced non-experts and novices were -0.056, 0.012, 0.046; median
sensitivities were 0.800, 0.811, 0.715; and median false positive rates were
0.177, 0.272, 0.396, respectively. The number of test questions needed to
measure those scores was 549. Our analysis identified that novices had a higher
noise level (uncertainty) compared to experienced non-experts and experts.
Using calculated noise and threshold levels, receiver operating curves were
created, showing increasing median area under the curve from novices (0.735),
to experienced non-experts (0.852) and experts (0.891).

Significance. Expert and non-expert readers can be distinguished based on
ability to identify IEDs. This type of assessment could also be used to identify
and correct differences in thresholds in identifying IEDs.

Key words: interictal epileptiform discharge, EEG, epilepsy, assessment, expert
and non-expert

Epilepsy relies heavily on two main
tools: the clinical history [1] and the
EEG. Since its development in the 1920s
[2], EEG recording capabilities have
advanced, while interpretation has

stayed largely the same. Identification
of interictal epileptiform discharges
(IEDs) is key in diagnosing epilepsy
and currently achieved by visual analy-
sis of the EEG. There have been
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attempts at standardizing criteria for identifying IEDs
[3-5], however, accurately identifying IEDs remains
largely a matter of apprenticeship and experience
[6, 7]. Although formal training and experience are
assumed to increase skill in EEG interpretation, no
objective method currently exists to measure this, and
there is only a set minimum for ACGME fellowship
requirements [8].

Currently, both fellowship-trained and non-fellow-
ship trained neurologists are permitted to interpret
EEGs, however, neurology residencies provide varying
amounts of exposure to EEG reading [9-11]. One
survey found that many neurology residents (62.7%)
have low confidence in interpreting EEGs indepen-
dently [12]. This varied exposure translates to varying
tendencies toward overcalling IEDs by classifying
benign sharp transients or artifacts as IEDs [13-16].
One group found that misdiagnosis of epilepsy
occurred in 25% of patients, with overinterpretation
of EEG a contributing factor in 40% of cases [14].
Misdiagnosis can have serious implications, including
cost of testing and medications, driving or work
restrictions and adverse effects of anti-seizure drugs,
while the actual diagnosis remains unknown and
untreated [14, 17].

A valid IED skill assessment tool could measure a
reader’s ability to interpret EEGs and reduce the risk of
misdiagnosis. This tool should identify not only a
reader’s accuracy, but also their consistency. It should
also distinguish “over-callers” (readers with higher
sensitivity but lower specificity) from “under-callers”
(readers with higher specificity but lower sensitivity)
across a wide range of obvious and ambiguous IEDs.
For our study, we created an online tool to assess
readers’ ability to identify IEDs (https://cdac.massgen-
eral.org/tools/spikedetector/spikeTest). We had two
main aims: (1) to determine whether test performance
could reliably distinguish accurate readers from those
who are not; and (2) to estimate the number of IED
examples needed to measure a reader’s level of
expertise with acceptable precision.

Methods

IED database

We used a database of 13,262 candidate IEDs,
including benign variants, collected from 991 abnor-
mal and 60 normal consecutively selected routine and
continuous scalp EEGs of pediatric and adult patients
performed at Massachusetts General Hospital be-
tween 2012 and 2016. The methods used to collect
these candidate IEDs have been described in a prior
publication [18]. Epileptiform waveforms were taken
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from those identified on abnormal EEGs and non-
pathologic candidate IEDs were taken in combination
from both abnormal and normal EEGs. Candidate IEDs
included a mixture of focal, regional and generalized
discharges. All EEGs were recorded using the standard
10-20 system (19-electrode array). Candidate IEDs
were independently scored by eight epilepsy/CNP
fellowship-trained physicians (“the original eight”)
who scored each as either epileptiform or non-
epileptiform [18]. Each candidate IED was then
assigned a consensus probability of being an IED
based on the judgement of a proportion of expert
raters (0/8, 1/8...8/8). These results were considered
the gold standard for the online IED classification test.
For analyses that required dichotomous outcomes, we
considered the correct binary answer to be “IED” for
candidates with positive votes from >50% of the
original eight, and “non-lED” for the remaining
candidates.

Participants

Participants, here called “raters”, of different back-
grounds were recruited through various methods of
outreach including networking during national meet-
ings (AES, ACNS, AAN), word of mouth and direct
emails to individuals. These raters were distinct from
the original eight used to define the gold standard.
Raters were provided with a link to the online tool
where they provided their name, affiliation, years of
experience reading EEGs and whether they were a
neurologist or epileptologist, and whether they were
board certified. Raters were then classified into three
categories: experts, experienced non-experts and
novices. Raters who were neurologists and had
completed at least one year of fellowship training in
epilepsy or clinical neurophysiology were classified as
experts. Board certification was not required because
it is not a requirement for practice and is inconsis-
tently present among EEG specialists. Raters who had
not completed fellowship training but who had at
least two or more years of experience reading EEGs in
clinical practice or through research exposure,
regardless of clinical background, were classified as
experienced non-experts. All other participants were
classified as novices.

Online IED classification test

The IED test presented each rater with 1,000 EEG
samples selected from a pool of 13,262. The 1,000
candidate IEDs were different for each rater, and were
randomly selected so that there were an equal
number of candidate IEDs in each of the nine
probability categories (0/8, 1/8, ..., 8/8), based on the
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number of original eight raters who had scored each
candidate IED [18].

Each participating rater viewed 1,000 candidate IEDs
sequentially. The EEG was visualized within a 10-
second window in multiple montages, including
physical C2 vertebral referential montage, common
average montage and longitudinal bipolar montage.
One ECG channel was also included in each montage.
Raters were free to increase or decrease the amplitude
of all channels when viewing each candidate IED. A
high-pass filter cut-off at 1 Hz and a notch filter at
60 Hz were applied to the data after it was resampled
to 128 Hz. High-pass and low-pass filters could not be
adjusted. For each candidate IED, the rater was asked
to classify it as epileptiform or non-epileptiform. For
each response, feedback was immediately provided to
the rater showing a smiling face if correct relative to
the gold standard (endorsed by 6/8-8/8 gold standard
votes), a frowning face if incorrect (endorsed by 1/8-3/
8 votes) and a neutral face for IEDs with 4/8-5/8
gold standard votes. These groupings were selected a
priori when designing the online tool as a way to
acknowledge differences between cases with clear
expert consensus vs cases for which experts show
substantial disagreement. Raters were not allowed to
change responses after confirming a response. Rater
responses were recorded for later analysis. In total, 53
raters participated in the study (excluding the original
eight), of whom 29 rated at least 850 samples; all others
were excluded. The institutional review board at the
Massachusetts General Hospital approved the study
and, because the study was considered to pose no risk
to patients, waived the requirement for informed
consent.

Calibration error (CE), sensitivity and false positive
rate calculation

For each scorer, within each of the nine probability
categories, we calculated the proportion of positive
votes the participant cast. Calibration error was
obtained by calculating the mean deviation of an
individual’s rating of IEDs, within each probability
category, compared to the expert consensus. Within
each probability category (called a “bin”), the
proportion of positive votes for the gold standard
proportion was subtracted from the proportion of
positive votes for each rater. For example, if a rater
identified 44% of samples within a bin whose refe-
rence probability is 0.125 (1/8), the deviation would be
0.44 — 0.125 = 0.315. This procedure was repeated for
each bin, and deviations were averaged to obtain the
rater’s CE.

Next, the sensitivity and false positive rate for each
rater were calculated. Samples were classified as
IEDs (“spikes”) if the majority of experts (at least five

of eight experts) voted positively, and non-IEDs
otherwise. Sensitivity was defined as the proportion
of positive samples correctly labeled as spikes. The
false positive rate was the proportion of non-IEDs
samples incorrectly labeled as spikes, in other words,
how often normal waveforms were identified as IEDs.

Number of observations needed to measure
performance

All participants were instructed to score 1,000 samples
to provide ample data to estimate raters’ performance
characteristics (sensitivity, false positive rate, calibra-
tion error) with high precision. However, scoring 1,000
samples is a substantial time investment, so we aimed
to determine the minimum number (N<1,000) of
samples needed to attain acceptably-precise esti-
mates of a rater’s performance. We operationally
defined estimates of sensitivity, false positive rate and
calibration error as acceptably precise when the
average (across participants) width of the 95% confi-
dence intervals (Cl) dropped below 0.1 for both
sensitivity and false positive rate.

We calculated 95% Cls for sensitivity, false positive
rate and CE for each rater for increasing numbers of
observations (between 100 and 1,000) using boot-
strapping (N=1,000). We averaged the width of the
95% Cls across all raters and determined the number
of observations at 95% Cl width <0.1 for all three
performance metrics.

Model decision threshold and noise level
(uncertainty) for each rater

To investigate the factors underlying differences in
performance between raters within and between
groups, we created a model of the decision process
for candidate IED samples based on binary yes/no
responses from each participant. We describe the
methods involved in this modeling in the following
section.

Results

Calibration error (CE), sensitivity and false positive
rates

In total, 29 raters completed the test, of whom nine
were clinical experts, seven were experienced non-
experts and 13 were novices. The answers that defined
the “ground truth” IEDs provided by the original eight
[18] were analyzed separately from those of the nine
clinical experts.

We calculated sensitivity and false positive rates for
each participant. Sensitivity for experts was 0.800
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V¥ Table 1. Performance metric values for expert, experienced, and novice raters.

Calibration Error

False Positive Rate

Sensitivity
median min
Experts + original eight 0.820 0.292 0.993
Experts 0.800 0.739 0.876
Experienced non-experts 0.811 0.692 0.870
Novices 0.715 0.613 0.845

median min max median min

0.204 0.005 0.699 -0.013 -0.368 0.330
0.177 0.124 0.277 -0.056 -0.074 0.044
0.272 0.202 0.295 0.012 -0.080 0.041
0.396 0.258 0.542 0.046 -0.050 0.163

(0.739, 0.876). Sensitivity for experienced non-experts
was 0.811 (0.692, 0.870), and for novices was 0.715
(0.613, 0.845). False positive rate for experts was 0.177
(0.124, 0.277), for experienced non-experts was 0.272
(0.202, 0.295), and for novices was 0.396 (0.258, 0.542)
(table 7). As shown in figure 1A, sensitivity increased
and false positive rate generally decreased as the level

of experience increased. Novices (red) tended to have
the lowest sensitivity and highest false positive rates,
while experts (blue) tended to have the highest
sensitivity and lowest false positive rates, with
experienced non-experts (green) falling in between.
Responses from the original eight gold standard
scorers are also shown for comparison (black).
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B Figure 1. (A) Performance metrics for sensitivity and specificity of clinical experts (blue), the original eight
experts used for the reference standard (black), experienced non-clinical experts (green) and novices (red).
(B-D) Calibration curves for experts (B), experienced non-experts (C) and novices (D).

Epileptic Disord, Vol. 24, No. 3, June 2022

* 499



N.M. Harid, et al.

A Width of 95% Cl

100 200 300 400 500 600 700 800 900 1000

\

0 | | | |
100 200 300 400 500

C o2

0.15 \
0.1

\

600 700 800 900 1000

®
]

0.05

100 200 300 400 500 600 700 800 900 1000
Number of samples

W Figure 2. 95% confidence interval (Cl) for each of
the performance metrics: sensitivity (A), false
positive rate (B) and calibration error (C) as a
function of the number of questions answered.
The black vertical dashed lines show the minimum
number of questions required to drive the
95% CI below 0.1, corresponding to 549 (A), 514
(B) and 250 (C).

Calibration curves were also created for the experts
(figure 1B), experienced non-experts (figure 1C) and
novices (figure 1D). Each curve shows the proportion
of samples rated as IEDs compared to the proportion
assigned by the eight gold standard raters. All three
groups showed reasonably good median calibration,
with ideal calibration being a diagonal line with a
slope of 1. Calibration error was -0.056 (-0.074, 0.044)
for experts, 0.012 (-0.080, 0.041) for experienced non-
experts and 0.046 (-0.050, 0.163) for novices. Of the
eight gold standard raters (black curves), there were
two over-callers and two under-callers, as evidenced

by curves falling higher and lower than the diagonal
line, respectively.

Number of observations needed to measure
performance

We calculated the number of samples each rater
would need to score in order to measure their
performance with a precision of at least 0.1, by
calculating the 95% Cl for false positive rate
(figure 2A), sensitivity (figure 2B) and calibration error
(figure 2C) as a function of the number of questions
answered. The curves show the median values of each
performance measure. The black dashed line shows
the number of questions needed for the 95% Cl width
to fall below 0.1 for each performance statistic. This
number was 549 for the false positive rate, 514 for
sensitivity and 250 for the calibration error. Thus, 549
samples suffice to precisely estimate all three perfor-
mance measures.

Framework for analyzing level of expertise in spike
detection

To investigate the factors underlying differences in
performance between raters within and between
groups, we created a model of the decision process
for candidate IED samples based on binary yes/no
responses from each participant, illustrated in
figure 3A.

In our model, a given sample has a certain likelihood p
of being interpreted as an IED by a rater, which we
express on the logit scale z = In(p/(1-p)); note that z can
be positive or negative. The rater’s mental processes
add noise (uncertainty) n to z, producing a noisy
percept, z’=z+n. The rater finally applies a
threshold 6 to reach a decision. If the resultant
perceived evidence z’ is greater than the threshold 6,
the rater classifies the candidate wave as an IED,
otherwise as a non-1ED.

The model has two parameters for each rater: the
noise/uncertainty level 6, which reflects a rater’s skill
in recognizing IEDs (an ideal rater would have a noise
level of 0), and the threshold 6, which represents the
rater’s personal preference as an over- or under-caller
(a rater who neither over- nor under-calls would have
a threshold of 0).

We estimated each rater’s decision parameters as
follows. First, we expressed the true (gold standard)
probability p for each IED on the logit scale, as
z =In(p/(1-p)). Then we added Gaussian noise n with
varying standard deviations ¢ and thresholds 6 to IEDs
observed by the rater, and measured the resulting
sensitivity and false positive rates, comparing these
with the sensitivity and false positive rates actually
observed for the rater. We identified the parameter
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B Figure 3. The “latent trait” framework for analyzing le

vel of expertise in spike detection: (A) schematic of

our framework for measuring a scorer’s level of expertise in recognizing epileptiform discharges; and (B)
simulation of the decision process for the ideal observer, expert (including the original eight), experienced

non-expert and novice (from top to bottom).

values 0 and o that best matched the rater’s actual
performance by performing a grid search, varying ¢
between 0 and 4, and 6 between -3 and 3. For each
combination (0, 6), we defined the error E(6, 6) as the
squared difference between the rater’s actual sensi-
tivity and the calculated sensitivity plus the squared
difference of the rater’s actual false positive rate and
the calculated false positive rate. The ¢ (noise level)
and 6 (threshold) at the global minimum of this error
function E(f, 6) were selected as the noise level and
threshold that best describe each rater’s behavior. To
construct a receiver operating characteristics (ROC)
curve for each rater, we used the calculated noise
level for that rater, and varied the threshold between 0
and 1 to calculate the sensitivity and false positive rate
at each threshold level. We also calculated an ROC
curve for each group by averaging group member
ROC curves.

In figure 3B, we show a simulation of the decision
process for the ideal observer (top row) and for each
of the 37 scorers (including the original eight). This

simulation uses the parameters estimated for the
participants (see below). The location along the x-axis
indicates the true (gold standard) underlying value (2),
according to which samples to the left of z = 0 should
be categorized as “non-spike” and those to the right
of z=0 as “spike”. Black marks indicate a given
sample implicitly perceived as more likely being “nota
spike”, while white marks indicate that the sample is
perceived as most likely being a “spike”. Due to
perceptual noise, some samples are colored white,
left of the z = 0 line (false positives), and some black
samples are colored black, right of the z = 0 line (false
negatives). One can see that the amount of perceptual
noise is greater for the novice group than for the
expert or experienced non-expert groups.

Estimated internal noise levels ¢ and threshold 6 for
experts (blue), experienced non-experts (green) and
novices (red) are shown in figure 4A. As shown in
table 2, the novice group had greater noise/uncertain-
ty (o = 2.664 [1.724, 8.577]) compared to experienced
non-experts (6 = 1.541 [1.346, 1. 838]) and experts

Epileptic Disord, Vol. 24, No. 3, June 2022

* 501



N.M. Harid, et al.

A
10
¢ Original 8
8r Experts
Experienced
Novices
6 F
°
[}
L2 (]
o
c
4 d °
° °
° [} [ ad
20 s,
o
C ¥ X
o Yuls
[ ] ‘.' i Y
0 )
-3 -2 -1 0 1 2 3
Threshold ¢
B
0.8
> 06
=
2
2
S Original 8
v 04 H Experts
Experienced
Novices
0.2
0 )
0 0.2 0.4 0.6 0.8 1
False positive rate
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experts used as the reference standard (black),
experienced non-experts (green) and novices (red).
(B) Updated ROC curves based on estimated
internal parameter (blue: experts; green: experi-
enced non-experts; red: novices).

(6=1.262[1.061, 1.575]). These group differences were
significant (pairwise Mann-Whitney U-test p values:
p'?=1.1E-4, p'?=5.2E-3, p**=4.9E-4; superscripts 1, 2
and 3 represent experts, experienced non-experts and
novices, respectively).

The relationship of the threshold parameter 6 to level
of expertise was less clear. There was an increasing
trend in group threshold levels, with novice thresh-
olds tending to be more negative, favoring over-
calling (8 = -0.313 [-2.021, 0.550]) relative to thresholds
for experienced non-experts (6 = 0.004 [-0.304, 0.471]),
and expert thresholds tending to be more positive,
favoring under-calling (@ = 0.269 [-0.251, 0.410]).
However, these differences were not all significant
(p'?=6.2E-3, p>*=0.05, p'*=0.17, respectively). More-
over, our data suggest that threshold values may be
more variable among experts, particularly when
including data from the original eight experts.

Using the calculated noise level for each rater, we
generated an individualized ROC curve by varying the
threshold between 0 and 1 and calculating the
sensitivity and false positive rate at each threshold
level. Figure 4B shows the resulting average ROC
curves for experts, experienced non-experts without
formal training and novices. The average area under
the ROC curve increases as the level of expertise
improves, from novices (0.735 [0.589, 0.843]) to
experienced non-experts (0.852 [0.819, 0.882]), to
experts (0.891 [0.845, 0.922]). There were significant
group differences in area under the curve (AUC)
between novices, experienced non-experts and
experts (p<0.01).

Repeating the above analysis including the original
eight experts (table 2) revealed overall similar results
at the group level, both numerically and in qualitative
trends, for ¢ noise level and 6 thresholds, however,
the original eight (black dots in figure 4A) showed a
much wider spread in estimated 6 threshold values.
Results of AUC analysis were similar when the original
eight experts were included, despite the fact that the
gold standard was defined based on these eight raters.

Discussion

In this study, we developed a test to assess expertise in
recognizing IEDs, a core skill in EEG interpretation. We
found that, with this test, it is possible to distinguish
experienced from inexperienced raters. Such a test
would also need to be of sufficient length to
adequately measure performance while not being
excessively onerous. We determined that precision
was acceptable (95% CI width <0.1) based on all three
measures of performance after 547 candidate IEDs had
been rated (figure 2A-C). This number can be
considered a reasonable minimum test length to
categorize a test taker’s skill level for IED detection. As
a group, clinical experts and experienced non-experts
had higher sensitivity and lower false positive rates,
and operated on ROC with larger area (higher AUC),
for classifying IEDs when compared to novices.
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¥ Table 2. Internal noise, threshold, and AUC values for expert, experienced, and novice raters and p values.

0
Experts + original eight 0.101 -2.021 2.030
Experts 0.269 -0.251 0.410
Experienced 0.004 -0.304 0.471
Novices -0.313 -2.021 0.550
p*?

0 0.61 0.17

o 7.6E-4 5.2E-3

AUC 1.2E-3 7.9E-3

o AUC
1.202 0.760 1.575 0.899 0.845 0.956
1.262 1.061 1.575 0.891 0.845 0.922
1.541 1.346 1.838 0.852 0.819 0.882
2.664 1.724 8.577 0.735 0.589 0.843

1,3 2,3

P P

0.02 6.2E-3 0.05
4.2E-6 1.1E-4 4.9E-4
4.2E-6 1.1E-4 8.7E-4

"Experts; “experienced non-experts; *novices.

Calibration error, however, did not appear to be
linked to level of expertise. In fact, calibration error
varied most widely among experts, suggesting that
over- and under-calling may be more related to an
individual’s personal threshold rather than level of
expertise. Our analysis suggests that there is a high
level of agreement for experts regarding whether a
waveform is an IED, however, the data vary because
experts apply different thresholds to reach their final
binary decisions. This new test advances the field of
EEG interpretation by providing a quantitative instru-
ment for measuring an individual’s skill and decision
threshold in recognizing IEDs, the hallmark of
epilepsy in routine EEG recordings.

The differences between the groups can be explained
by examining training background. Fellowship train-
ing exposes trainees to a wide variety of non-
epileptiform sharp waveforms, so-called “benign
variants”, and different types of true IEDs. In addition,
experts also read a relatively higher volume of EEGs
with expert level supervision. Experienced non-
experts did not have formal epilepsy or neurophysi-
ology training, and had varying degrees of neurology
training, but had been responsible for interpreting a
substantial number of EEGs in clinical practice or
research, while novices had the least amount of
exposure. Several studies have shown that volume of
exposure to EEGs is a factor influencing a rater’s ability
to correctly identify epileptiform discharges [19, 20].
As such, high volume and varying exposure to EEGs
remains an important aspect of learning. It is possible
that with appropriate supervision and feedback,
exposure to a large number of different EEGs could

lead to competence in clinical interpretation, without
formal fellowship training [19].

The significant variation in calibration error among
experts warrants further comment. Within the original
eight, there were four outliers. The two over-callers
had higher sensitivity but also higher false positive
rates; the two under-callers had lower false positive
rates at the cost of lower sensitivities. Our model was
able to account for these differences, allowing us to
estimate the ROC curve that the experts appear to be
operating on. Our analysis shows that experts
generally operate on better ROC curves (higher
AUC, better discrimination, less internal noise) than
non-experts. In turn, calibration errors (tendency to
under- or over- call) are attributable in this framework
to differences in thresholds applied to the perceived
probability that a sample is an IED. These differences
can be understood by considering the training experts
receive compared to experienced and novice raters.
By reviewing a higher volume of EEGs and IED
candidates, experts achieve higher levels of discrimi-
nation (better ROC curves) than non-experts. Never-
theless, because EEG readers are required to make a
binary statement about whether IEDs are present vs
absent in any particular EEG, they must choose a
threshold. Unfortunately, without a universally agreed
consensus as a basis to identify IEDs, these thresholds
can relate to multiple factors, including a developed
tendency to be an under-caller or an over-caller,
differences in training, preferred criteria to identify
IEDs, or even local group preferences. This further
highlights the need for new techniques to unify
interrater agreement.
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Our results also support and expand upon prior work
related to interrater agreement. Several prior studies
suggested that there is poor interrater agreement
among experts regarding IEDs [18, 21-26], and indeed
our results show substantial disagreement in binary
responses, especially among the original eight
experts. One possible explanation is that different
experts have very different concepts of what is or is
not likely to be an IED. Alternatively, Jing et al. argued
that disagreement among experts can be largely
explained by varying thresholds each rater uses when
making a decision [18]. Using the current data, we
investigated this idea further by creating an explicit
model to determine how different traits of a rater
-namely their skill and decision threshold- relate to
their ability to recognize IEDs and their tendency to
over-orunder-call. Inour model (figure 3A), each rater’s
perception of the information in the EEG is subjectto a
certain amount of perceptual noise and internal
thresholds. Despite variation in threshold values,
experts operated on similar ROC curves (figure 4B).
We interpret this as showing that experts tend to have
relatively low levels of internal noise (higher skill level)
but different operating thresholds when deciding to
label samples as epileptiform when compared to
novices. This helps to explain the variable findings
regarding interrater agreement in prior studies, while
supporting the previously asserted importance of
expertise in EEG interpretation [16].

Even though experts operate on similar ROC curves,
the observed over and under-calling of IEDs among
experts remains problematic [13, 14, 17]. Such differ-
ences imply that an individual rater’s preferences may
lead to variation in the diagnosis of epilepsy, even
when the underlying evidence is identical. Therefore,
an argument can be made to try to adjust individual
thresholds of raters to obtain better agreement, and to
reduce over- and under-calling. Using already estab-
lished guidelines to identify IEDs [6, 27] in combina-
tion with a tool such as ours, it might be possible to
train readers to behave more uniformly in rating IEDs.
Understandably, while using a tool like this, it would
be difficult to establish which threshold is “correct”.
Alternatively, it may be worth considering an ordinal
method to classify IEDs [26, 28]. Not imposing a binary
threshold, especially in ambiguous cases, could
prevent strict labeling of patients based on EEG,
allowing for warranted uncertainty regarding a
diagnosis of epilepsy. Similar to laboratory values or
radiographic findings being weighed based on clinical
context, EEG findings may be weighed differently if
ordinal decisions are reported. While this approach
may not accelerate diagnosis, it could help prevent
erroneous diagnoses [29].

Our study has important limitations. First, we specifi-
cally examined IEDs. We chose to focus on IEDs

because they are arguably the most important
findings on an EEG in establishing the diagnosis of
epilepsy [1, 71. However, EEGs can be abnormal for
other reasons and can change in the context of state of
consciousness [22]. Some studies have shown that
there is a higher level of interrater agreement in
determining whether an EEG is abnormal even when
there is disagreement over an individual IED being
epileptiform [18, 22, 24, 30, 31]. A second limitation is
the relatively small number of raters for each group.
Given the previously mentioned variable interrater
agreement among experts and different thresholds in
discriminating IEDs, variance may be underestimated
within the individual groups in our sample. A third
limitation is that we defined “correct” answers based
on expert consensus, without forcing experts to apply
a set of explicit criteria. We feel that this is reasonable
and matches the way experts learn to recognize IEDs
(by experience through seeing many examples, rather
than by applying explicit rules). Nevertheless, others
advocate defining IEDs based on explicit criteria such
as the six IFCN features [3]. While this approach also
ultimately requires some degree of subjective judge-
ment in applying the criteria, it is possible that this
approach could lead to better agreement among
experts. A fourth limitation is that our EEGs consisted
of the conventional 19-channel 10-20 electrode
configuration, however, a newer 25-electrode array
has recently been proposed [32]. The 25-electrode
configuration has not yet been adopted widely in the
US and is not used in our institution. While the 25-
electrode configuration has been shown to help with
IED localization (especially temporal IEDs), it is not
known whether the six additional electrodes influ-
ence inter-rater reliability in IED identification.

A topic not addressed in our study is how to improve
agreement among EEG reviewers. One possible ap-
proach is to train reviewers to apply a set of standard
criteria, such as the proposed six IFCN criteria for IEDs
[3], and to instruct reviewers to “automatically” classify
an example as an IED based on a minimal number of
features present. However, as mentioned above,
assessing such criteria still requires a certain level of
subjectivity, and the criteria may not address all the
characteristics of IEDs encountered in practice. An
alternative strategy, that does rely on explicit criteria,
could be to expand on the approach used in our study
by providing feedback over an extended period, while
allowing a rater to track over time how well they agree
with expert consensus. Ultimately, some combination
between consistent use of explicit criteria and the
collective consensus of many expert readers may be
needed to establish a comprehensive, high-quality
“ground truth” about IEDs.

In conclusion, our results show that it is possible to
quantify expertise in scoring candidate IEDs. With
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further development, our test, or one like it, could
potentially be used to evaluate whether an individual
is qualified to interpret EEGs clinically. However,
further work is needed to establish the metrics and
precise gold standard which should be used to qualify
a reader as an “expert” based on test performance.
Our results underscore the need for teaching
methods and tools to improve consistency among
EEG readers. Improving consistency would ideally
lead to reduction in under- and over-calling of IEDs,
and less frequent misdiagnosis of epilepsy. W

Key points

e Expert and non-expert readers can be distin-
guished based on ability to identify interictal
epileptiform discharges (IEDs).

e We have developed an online test to quantify
how well readers, with different training levels,
recognize IEDs on EEG.

e Our results suggest the number of IEDs, needed
to measure skill level with acceptable precision,
is 549.

* We propose a decision model that estimates each
reader’s skill and internal implicit bias.
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