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ABSTRACT – EEG activation of interictal epileptiform discharges (IEDs) dur-
ing NREM sleep is a well-described phenomenon that occurs in the majority
of epileptic syndromes. In drug-resistant focal epilepsy, IED activation
seems to be related to slow wave activity (SWA), especially during arousal
fluctuations, namely phase A of the cyclic alternating pattern (CAP). Con-
versely, in childhood focal epileptic syndromes, including Encephalopathy
related to Status Epilepticus during slow Sleep (ESES), IED activation seems
primarily modulated by sleep-inducing and maintaining mechanisms as
reflected by the dynamics of spindle frequency activity (SFA) rather than
SWA. In this article, we will review the effect of sleep on IEDs with a partic-
ular attention on the activation and modulation of IEDs in ESES. Finally, we
will discuss the role of the thalamus and cortico-thalamic circuitry in this

ave discharges during sleep, EEG,
epticus during slow sleep, sleep, tha-
syndrome.
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Sleep consists of repetitive cycles
where NREM and REM sleep alter-
nate with a periodicity of about
90-100 minutes. Each state requires
distinctive regulatory mechanisms
and exerts a different modulatory

effect on physiologic and epilep-
tic activity (Amzica, 2002; Brown et
al., 2012). In this article, we will
review the effect of sleep on interic-
tal epileptic discharges (IEDs) with a
particular attention on the activation
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nd modulation of IEDs in the syndrome of
ncephalopathy related to Status Epilepticus during
low Sleep (ESES). Finally, we will discuss the role of
he thalamus and the cortico-thalamic circuitry in this
yndrome.

ctivation of IEDs during sleep

calp EEG studies have shown that NREM sleep
ncreases the number of IEDs and favours seizure
ccurrence both in focal and generalized epilepsies
hile REM sleep does not (Ferrillo et al., 2000; Herman
t al., 2001; Campana et al., 2017). NREM sleep can also
acilitate the spread of IEDs, both ipsilaterally and con-
ralaterally from the primary focus in focal epilepsy
Malow et al., 1998; Sammaritano et al., 1991), espe-
ially during arousal fluctuations, namely phase A of
he cyclic alternating pattern (CAP) (Halász et al., 2004;
arrino et al., 2006). Conversely, this phenomenon is
ot observed in REM sleep, where a reduced spa-

ial and temporal summation of electrical signals is
bserved, thereby limiting the propagation and scalp
EG expression of the IEDs (Sammaritano et al., 1991;
rauscher et al., 2016; Campana et al., 2017).
he mechanisms by which NREM sleep activates IEDs
ave been extensively studied since the original pub-

ication by Gibbs and Gibbs on the usefulness of sleep
o record IEDs (Gibbs and Gibbs, 1947). Experimental
ata have demonstrated that the same physiological

halamocortical and cortical oscillations operating dur-
ng NREM sleep and leading to the appearance of the
ypical physiological graphoelements (e.g. spindles
nd K complexes) also favour the occurrence of IEDs.
n particular, the presence, during NREM sleep, of a
ontinuous alternation between neuronal depolariza-
ion (up-state or activated state) and hyperpolarization
down-state or silent state) at the cellular level creates a
tate of instability that enables the epileptogenic cor-
ical substrate to produce IEDs (Steriade et al., 1993;
mzica, 2002). Intra-cerebral sleep EEG recordings in
pileptic patients have confirmed these findings show-

ng that IEDs are modulated by cortical sleep slow
aves being significantly more frequent during the

ransition from up to down state (Frauscher et al., 2015).
oreover, the presence of infraslow oscillations, as

bserved by both quantified and visual EEG analy-
is, seem to further increase the occurrence and the
pread of IEDs by creating an additional instability
pileptic Disord, Vol. 21, Supplement 1, June 2019

perating at a macroscopic level (Vanhatalo et al.,
004; Halász et al., 2013; Gibbs et al., 2015; Zubler
t al., 2017). Accordingly, Ujma et al. showed that
EDs recorded with subdural electrodes were max-
mally associated with phase A1 of the CAP (Ujma
t al., 2015). Finally, these observations have been
onfirmed by Stereo-EEG studies, showing that the
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owest level of IED production is observed during
he plateau of delta activity, corresponding to a sta-
le and spatially homogeneous production of delta
ctivity in different brain regions (Gibbs et al., 2016;
ubler et al., 2017).

ctivation and modulation of IEDs
uring sleep in ESES

SES provides perhaps the most spectacular example
f EEG activation of IEDs during sleep. The peculiar
haracteristic of this epileptic syndrome is state depen-
ency. In wakefulness, the EEG is usually abnormal,
howing paroxysmal foci in the fronto-temporal or
entro-temporal regions or isolated bursts of diffuse
pike-wave activity. During NREM sleep, an EEG pat-
ern of nearly continuous, pseudo-rhythmic bursts of
iffuse IEDs arises. This pattern typically stops upon
ntering REM sleep where IEDs become fragmented,

ess continuous and more localized (Tassinari et al.,
012). The shape and field potentials of IEDs in ESES
how similarities with the IEDs of other childhood
ocal epilepsy syndromes such as benign epilepsy
ith centro-temporal spikes (BECTS), Panayiotopou-

os syndrome (PS), atypical BECTS and Landau-Kleffner
yndrome (LKS). Although IEDs are often bilateral,
n ESES, as in these other syndromes, a leading
emisphere usually drives the IEDs with different
egree of secondary bilaterality during sleep (Halász
t al., 2005). Because of clinical and EEG similarities
etween ESES and these syndromes, it is therefore
rgued that ESES is at the far end of this continuum
f syndromes. Indeed, BECTS, PS, atypical BECTS,
KS and ESES share a similar perisylvian location of
EDs, an important increase in IEDs during sleep, a
eterioration of language and executive functions of
arious intensities as well as common genetic muta-
ions (De Negri, 1997; Doose et al., 2001; Hahn et
l., 2001; Halász et al., 2005; Panayiotopoulos et al.,
008; Lemke et al., 2013; Lesca et al., 2013; Turner
t al., 2015). Sleep-related IED activation in ESES is
enceforth thought to represent an extreme exagger-
tion of what is seen in BECTS during sleep, both
n space and synchronicity (De Negri, 1997; Halasz
t al., 2014).
arlier EEG studies based on visual sleep stage scor-
ng in patients with BECTS had identified slow wave
leep has a potent activator of IEDs (Beaumanoir et
S55

l., 1974; Dalla Bernardina et al., 1982; Clemens and
ajoros, 1987), with the descending slope of the cycles

aving the greatest activating properties (Clemens and
ajoros, 1987). By using spectral EEG analysis meth-

ds to compare IED dynamics on EEG plotted with
emporal series of SWA, the main indicator of sleep
epth, or spindle frequency activity (SFA), it was shown
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igure 1. Temporal series of spikes per minute plotted togethe
low-wave activity (SWA; lower graph) in a patient affected by La
he better temporal relation between spikes per minute and spin
rom Nobili et al., 2000.

hat a higher correlation between IED distribution and
FA with respect to SWA exists in BECTS, PS, LKS
nd ESES (Nobili et al., 1999, 2000, 2001; Beelke et
l., 2000) (figure 1). This finding differs from what is
bserved in adults with focal epilepsy, where IEDs are
nown to be strongly modulated by arousal fluctua-
ions (CAP) (Terzano et al., 1991). Indeed, Terzano et al.
ave shown that IEDs in BECTS were not modulated
56

y the CAP (Terzano et al., 1991). Moreover, when lim-
ting the analysis to the part of the first NREM sleep
ycle where SWA and SFA show a diverging behaviour
SWA increases and SFA decreases), Ferrillo et al.
2000) showed that correlation coefficients between
FA and IEDs in childhood focal epilepsy syndromes
ere highly positive while correlations between SWA

s
T
p
c
w
c
t

h spindle frequency activity (sigma activity; upper graph) and
-Kleffner Syndrome. Hypnogram is shown in the center. Notice
equency activity with respect to SWA. Modified with permission

nd IEDs were always negative, implying the existence
f mutually exclusive sleep-related IEDs facilitating
echanisms.

n ESES, the tremendous amount of IEDs hinders
he application of spectral EEG analysis. However,
he cyclic organization of sleep in ESES is grossly
reserved showing a standard ultradian rhythm with
pproximately 80% of total sleep time spent in NREM
Epileptic Disord, Vol. 21, Supplement 1, June 2019

leep versus 20% in REM sleep (figure 2; upper panel).
his has permitted Nobili et al. to compare the
hysiological evolution of SWA and SFA EEG power in
ontrol subjects to the time series of IEDs in children
ith ESES (Nobili et al., 2001). Since SWA distribution is

haracterized by an exponential decay from the first to
he last NREM sleep cycle during the night, one could
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Figure 2. Upper panel - temporal distribution of spikes during the whole night in a single representative subject with ESES. Notice
t hypn
n ycle
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he rather stable values of IEDs over the consecutive cycle. The
ormalized SWA and SFA time course in the first NREM sleep c
hows a strong correlation with SFA and an inverse time course w
here SFA and SWA have diverging behavior. ESES, Encephalop
pileptiform discharges; SFA, spindle frequency activity; SWA, sl

ypothesize that a similar decay in IED production
hould occur throughout the night. However, as
hown in figure 2 (upper panel), the mean IED count
id not change throughout the consecutive NREM
pileptic Disord, Vol. 21, Supplement 1, June 2019

ycles. Correlation analysis showed that the temporal
istribution of IEDs was also positively correlated with
FA (figure 2; lower panel). This finding suggests that
he IED activation throughout the night in ESES seems
o be more sensitive to the sleep-promoting and
maintaining mechanisms than to the homeostatic
rocess related to sleep depth.

E
i
d
I
i
o
t

ogram is shown under the IED profile. Lower panel - Model of
in ESES. The distribution of IEDs per minute in a single subject
espect to SWA, especially between the two dotted vertical lines
related to Status Epilepticus during slow Sleep; IEDs, interictal
ave activity. Modified with permission from (Nobili et al., 2001).

ata on IED frequency extracted from the aforemen-
ioned studies are summarized in table 1. Values of
ED frequency during NREM sleep show a constant
ncrease from “benign” focal epilepsy syndromes to
S57

SES. Of note, this progression also mirrors the clin-
cal continuum of language and executive function
eterioration observed in some of these children.

ndeed, a peculiar aspect of these epileptic syndromes
s their exclusive occurrence during a specific devel-
pmental period, from 2-14 years, an age when cor-

ical synaptogenesis, abundant axonal sprouting and
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Table 1. Spike index comparison during NREM and REM sleep in different syndromes
of focal childhood epilepsy.

No. subjects Age NREM spike index REM spike index

BECTS 9 7.4 (2.5) 23.5 (9.8) 6.3 (4.4)

PS 5 5.8 (2.1) 32.8 (12.3) 16.1 (8.6)

LKS 3 4.3 (0.5) 40.6 (5.6) 21.6 (3.8)

S dev
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ESES 5 5.6 (1.1)

pike index: number of spikes/minute; parenthesis: standard
S: Panayiotopoulos syndrome; LKS: Landau-Kleffner; ESES: elec
ata extracted from Beelke et al., 2000; Nobili et al., 2001, 2000, 19

lemental functional network are being established
De Negri, 1997; Panayiotopoulos et al., 2008; Kurth et
l., 2010). The abundance of IEDs during NREM sleep
as lead to the hypothesis that excessive IEDs interfere
ith SWA production and/or modulation thus imped-

ng the recuperating, downscaling and learning prop-
rties of slow wave sleep (see Rubboli et al., p. S62-S70).
t is also interesting to note, as evidenced in table 1,
hat an increase in IEDs is observed not only during
REM sleep but also during REM sleep, especially in

KS and ESES where the spike index remains very high
uring this state. In the future, further assessment
f these phenomena might improve our understand-

ng of the neuro-developmental deficits in ESES and
ore precisely the impact of IED frequency in different

leep states.

SES: does the thalamus play a role?

he nature of IEDs in ESES during NREM sleep seems
o be strongly linked to the cortico-thalamic circuitry.
atry et al. speculated that a “particularly active syn-
hronizing system. . . could account for the extreme
ctivation of the spike and wave discharges” (Patry et
l., 1971). Although it is unlikely that the IEDs initiate in
he thalamocortical circuit as once thought, this sys-
em is certainly implicated in its activation, apparently
romoting and/or maintaining their occurrence, espe-
ially in the context of an immature hyperexcitable
rain. Indeed, the observed correlation between

EDs and SFA in ESES seems to suggest that the same
halamocortical oscillations responsible for spindle
58

ccurrence create a neurophysiological substrate
hat favours the activation and spread of IEDs in an
yperexcitable immature cortex. Therefore, although

he cortex is the minimum substrate necessary for the
roduction of IEDs, connectivity of thalamic struc-

ures seems to have a role in their synchronization
nd spread (Steriade and Contreras, 1995). Once the

i
(
o
h
c
1
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69.6 (10.1) 34.2 (4.7)

iation; BECTS: benign epilepsy with centrotemporal spikes;
status epilepticus during sleep.

scillation has been set in motion, the cortex and
halamus is hypothesized to form a unified oscilla-
ory network in which both structures drive each
ther (Meeren et al., 2005). Using positron emission

omography with [18F]-fluorodeoxyglucose (FDG-PET)
o study functional changes in cortical and thalamic

etabolism, most studies found no significant or
symmetric metabolic changes in thalamic nuclei,
herefore downplaying the role of the thalamus
n ESES (Maquet et al., 1995; De Tiège et al., 2013,
008). However, recent data suggest that reduced
halamic volume and hypo- or hypermetabolism can
e observed in ESES, highlighting the complexity of
tudying this dynamic process (Agarwal et al., 2015;
ánchez Fernández et al., 2017).
he decrease or absence of metabolic changes in
he thalamus does not, however, equate to thalamic
ilence. Using functional MRI (fMRI) analysis in a child
ith atypical BECTS and linguistic difficulties, Miran-
ola et al. highlighted the involvement of a wide
ortico-subcortical network that involved the thala-
us during sleep IEDs (Mirandola et al., 2013). Such a

halamic involvement was absent during wake IEDs, in
ine with the role of spindle-generating mechanisms,
avouring the activation and propagation of IEDs
uring sleep through secondary bilateral synchrony

Morrell et al., 1995; Nobili et al., 1999, 2001). A tha-
amic involvement during sleep-related IEDs has also
een shown in some children with ESES (Siniatchkin
t al., 2010).
nother intriguing association between ESES and

he thalamus concerns early thalamic lesions which
ave been suggested to play a role in generat-
Epileptic Disord, Vol. 21, Supplement 1, June 2019

ng ESES by damaging the thalamocortical circuit
Monteiro et al., 2001; Leal et al., 2018). Cohorts
f children with early acquired thalamic injury
ave shown that approximately a third of these
hildren go on to develop ESES (Veggiotti et al.,
998; Monteiro et al., 2001; Guzzetta et al., 2005;
ánchez Fernández et al., 2012). However, most reports
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inking thalamic injuries to sleep EEG activation and
SES concern children with extensive brain damage
hat also included cortical and white matter injuries.
n the presence of such injuries, children should nev-
rtheless be monitored closely for paroxysmal activity
uring sleep and cognitive deterioration (Kelemen
t al., 2006).
aken together, the available data support a role for
he thalamus in the pathophysiology of ESES and
ther childhood focal epilepsies, not at the fore-

ront of IED production, but as a necessary facilitator
f sleep-related IEDs. This emphasizes the concept
f the “cortico-thalamo-cortical loop”, which seems

o require cortical dysfunction as well as thalamic
verexcitation to produce the EEG pattern of ESES

Sánchez Fernández et al., 2013). A change in the
egulatory loop, induced by cortical alterations (struc-
ural or not), could result in a loss of feed-forward
nhibition to thalamocortical neurons and favours

robust oscillatory cortico-thalamo-cortical network
Beenhakker and Huguenard, 2009; Paz et al., 2010).

n the other hand, the presence of a cortical deaf-
erentation from thalamic inputs could also alter this
oop and create a state of cortical hyperexcitability.
he reason why only a percentage of children develop
SES remains unanswered. One hypothesis could be
he severity or specificity of cortico-thalamic circuitry
amage and/or rearrangements (Halász et al., 2005;
elemen et al., 2006; Sánchez Fernández et al., 2013).
gain, the presence of certain region-specific genetic
redispositions such as mutations in the GRIN2A
ene, might precipitate the appearance of this syn-
rome (Lemke et al., 2013; Lesca et al., 2013; Turner
t al., 2015).

onclusion

ctivation of IEDs during NREM sleep is a well-
escribed phenomenon that occurs in the majority
f epileptic syndromes. In adults with drug-resistant

ocal epilepsy, IED activation seems to be related to
WA and arousal fluctuations, especially with phase
1 of the CAP (Ferrillo et al., 2000; Parrino et al., 2006;
jma et al., 2015). In most childhood focal epileptic

yndromes, including ESES, IED activation during
leep seems primarily associated with SFA rather than
WA (Ferrillo et al., 2000b; Nobili et al., 2001). In ESES,
owever, such an activation is extremely pronounced.
pileptic Disord, Vol. 21, Supplement 1, June 2019

he reason for this is still unclear although evidence
uggests the necessary interplay between the cortex
nd the thalamus. Indeed, the role of the thalamus,
s part of the “cortico-thalamo-cortical loop”, seems
ssential but not at the forefront of the pathophysi-
logy. Linking the anatomo-electro-clinical findings
nd the genetic profile with sleep disturbances and
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ognitive impairment might be key in future studies to
lucidate and perhaps halt this harmful developmental
rocess. �
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