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ABSTRACT - Aims. In recentyears, many different DNA mutations underly-
ing the development of refractory epilepsy have been discovered. However,
geneticdiagnostics are still notroutinely performed during presurgical eval-
uation and reports on epilepsy surgery outcome for patients with genetic
refractory epilepsy are limited. We aimed to create an overview of the lit-
erature on seizure outcome following epilepsy surgery in patients with
different genetic causes of refractory epilepsy.

Methods. We systematically searched PubMed and Embase prior to Jan-
uary 2017 and included studies describing treatment outcome following
epilepsy surgery in patients with genetic causes of epilepsy. We excluded
studies in which patients were described with epilepsy due to Tuberous
Sclerosis Complex or Sturge-Weber syndrome (since this extensive body
of research has recently been described elsewhere) and articles in which
surgery was aimed to be palliative.

Results. We identified 24 eligible articles, comprising a total of 82 patients
who had undergone surgery for (mainly childhood-onset) refractory
epilepsy due to 15 different underlying genetic causes. The success rate
of surgery varied widely across these different genetic causes. Surgery was
almost never effective in patients with epilepsy due to mutations in genes
involved in channel function and synaptic transmission, whereas surgery
was significantly more successful regarding seizure control in patients with
epilepsy due to mutations in the mTOR pathway. Patients with a lesion on
MRI tended to have higher seizure freedom rates than those who were
MRI-negative.

Conclusion. Although the evidence is still scarce, this systematic review
suggests that studying genetic variations in patients with refractory epilepsy
could help guide the selection of surgical candidates.

Key words: seizure, mutation, hereditary, mTOR, epilepsy surgery, MRI-
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It is estimated that around 60% of epilepsy patients
have focal epilepsy, of whom nearly half are medi-
cally refractory (West et al., 2015). Epilepsy surgery is
the only treatment that may be curative in patients
with medically refractory epilepsy. However, epilepsy
surgery is strongly under-utilised and currently less
than half of refractory epilepsy patients are referred
for evaluation of epilepsy surgery candidacy (de Flon
et al., 2010; Uijl et al., 2012).

The relatively low proportion of potential surgical can-
didateswhoactually undergo surgeryislargelyduetoa
lack of factual information regarding epilepsy surgery
and uncertainty around treatment outcome (Dewar
and Pieters, 2015). Although there are several prognos-
tic factors for surgical success (West et al., 2015), it is
often unclear for which patients surgery is indicated
or contraindicated. Currently, on average, only 65% of
patients achieve seizure freedom after surgery (West
et al., 2015).

Over recent years, it has increasingly been acknowl-
edged that many patients with either generalized or
focal types of epilepsy have an underlying genetic
cause (Helbig et al., 2008; Hildebrand et al., 2013).
These include single gene mutations that are related
to channelopathies and disorders of synaptic trans-
mission (Helbig et al., 2008), or the mammalian target
of rapamycin (mTOR) pathway, involved in various
processes such as neuronal growth, migration, and
proliferation (Baldassari et al., 2016). In addition, there
are several microdeletions and other chromosomal
abnormalities that are known to be associated with
epilepsy. This heterogeneity in molecular genetic
aetiology points to differences in the underlying
pathophysiology and is reflected by phenotypic dif-
ferences between patients. It is possible that these
different causes are also associated with differences
in response to epilepsy surgery.

It is commonly accepted that epilepsy patients with a
genetically determined focal structural lesion(s), such
as tuberous sclerosis, may be candidates for surgery
(Zhang et al., 2013). However, many patients with
genetic causes of epilepsy do not have detectable
epileptogenic lesions on MRI, so called “MRI-
negative” patients. In general, the absence of a visible
brain lesion on MRl significantly decreases the chance
of surgical success (Téllez-Zenteno et al.,, 2010; Bast,
2013). MRI-negative patients with focal epilepsy can
still be considered surgical candidates (Bast et al.,
2016) as there may be an undetected underlying focal
epileptogenic brain lesion, such as mild malforma-
tions of cortical development (mMCD) or focal cortical
dysplasia (FCD) (So and Lee, 2014). Greater MR field
strength, improved MRI sequences, and new post-
processing techniques have increased the detection
rate of such mMCDs and FCDs (So and Lee, 2014).

Even in truly MRI-negative patients with refractory
focal epilepsy and a consistent electrophysiological
focus, epilepsy surgery is increasingly considered
due to advances in multimodal functional neu-
roimaging and invasive monitoring techniques, such
as stereo-electroencephalography (S-EEG). Pathology
often subsequently reveals an underlying mMCD or
FCD (So and Lee, 2014). However, surgery has been
successful in some (18-47%) patients without demon-
strated pathological abnormalities (Téllez-Zenteno et
al., 2010). A still unknown proportion of MRI-negative
patients with focal refractory epilepsy who are evalu-
ated for epilepsy surgery may have a genetic epilepsy
syndrome. Identification of such genetic causes could
have prognostic value for surgical outcome in these
patients.

Genetic diagnostics are still not routinely performed
in patients with refractory epilepsy, mostly due to
the high costs and low throughput of traditional
DNA sequencing techniques (Hildebrand et al., 2013).
The possibility to comprehensively test all epilepsy
patients for genetic causes has been enhanced in
recent years, with the advent of next-generation
sequencing techniques (Hildebrand et al., 2013).

To date, reports of epilepsy surgery for patients with
genetic causes of epilepsy are sporadic. Some recent
studies have shown that epilepsy surgery may be effec-
tive in patients with mutations in specific genes (Lee
et al.,, 2012; Jansen et al., 2015), but this has never
been shown in patients with other gene mutations
(Barba et al., 2014; Skjei et al., 2015). Such findings
suggest that routine genetic diagnostics for causative
mutations of epilepsy prior to surgery could be of
importance to determine surgical candidacy. This sys-
tematic review provides an overview of the reported
outcomes of epilepsy surgery in patients with an estab-
lished genetic cause of epilepsy. Future aims include
the use of genetic diagnostics in the presurgical assess-
ment of patients with refractory epilepsy in order to
assist the clinician in the often complex dilemma of
whether to proceed to surgery or rather stop the
time-consuming, costly, and often invasive, presurgi-
cal trajectory in patients with a proven genetic epilepsy
syndrome.

Methods

Search strategy and study selection

Our search strategy and study selection are sum-
marised in figure 1. A literature search in PubMed
and Embase was performed by one author (RS) in
order to identify articles in which epilepsy, genetics,
and surgery were described together, using various
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Hits from search string:
PubMed: 476
Embase: 934

Total : 1410

A

v

Duplicate studies: 258

Total articles screened: 1152

Articles excluded due to:

irrelevant topic, no
epilepsy surgery

performed, epilepsy
surgery not intended to

Eligible articles included: 20

be curative, no genetic
cause of epilepsy, or
epilepsy due to tuberous

Articles found by cross-

referencing: 4 »

A

sclerosis complex or
Sturge-Weber syndrome:
1132

Total articles included:
24 articles; 82 patients

A 4

Gene mutations related
to channel function or
synaptic transmission :
5 articles; 14 patients

Gene mutations in mTOR
pathway genes: 10
articles; 30 patients

Other genetic causes:
9 articles; 38 patients

Figure 1. Flowchart of search strategy and study selection.

synonyms (supplementary tables S1 and S2). The
search was initially performed in June 2016 and
updated in November 2016. The search yielded a total
of 1,345 articles.

We included all studies reporting on epilepsy surgery
and seizure outcome and collected details only on
patients who either had a definite clinical diagnosis of
a genetic syndrome with co-morbid epilepsy, or who
had a mutation or other genetic abnormality detected
that was highly likely to be the cause of their epilepsy.
All patients with genetic causes of epilepsy who were
described in the reports were included, regardless
whether the causative mutation was somatic/mosaic
or germline, although we describe the results for these
subgroups separately. We excluded articles on patients
with epilepsy due to tuberous sclerosis complex or
Sturge Weber syndrome from this systematic review,
since this extensive body of research has recently been

described elsewhere (Bourgeois et al., 2007; Zhang
et al., 2013). Furthermore, we excluded articles in
which epilepsy surgery was described for patients with
genetic mutations that were associated with, but not
considered monogenic causes of, their epilepsy; for
example, BRAF mutations in glioneuronal tumours,
reported as potential prognostic factors for surgery
outcome (Prabowo et al., 2014). Moreover, we excluded
surgical cases when the intention of surgery was stated
to be palliative, rather than curative.

All search results were reviewed based on title and
abstract. The full-text was reviewed in potentially eli-
gible articles. Moreover, references of the included
articles were reviewed, as well as other articles in
which the eligible articles are cited, using the “cited
by” functions in PubMed and Embase. The article
search and selection were checked by a second
author (MS).
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Data processing

A standardised data extraction form was created, con-
taining nine variables: affected gene, causative genetic
variants, number of patients, histology of resected tis-
sue, MRI findings, surgery type, mean follow-up time
in years, post-surgical seizure outcome, and whether
the surgery was successful. We divided the included
articles into three main categories of genetic causes of
epilepsy:

— pathogenic variants of genes related to ion channel
function and synaptic transmission;

- pathogenic variants of mTOR pathway genes;

— other genetic causes of epilepsy.

Extraction of raw data from the included articles was
performed by RS and checked by MS.

Whenever possible, we classified histological descrip-
tions of resected or isolated tissue according to the
standardised classification system of focal cortical dys-
plasia (FCD) defined by the ILAE.

Where possible, we categorised descriptions of MRI
findings as FCD, hippocampal sclerosis (HS) or
hemimegalencephaly. Patients were defined as MRI-
negative based on either no abnormalities or only
non-specific abnormalities, not judged to be the cause
of epilepsy, on MRI. All patients without detectable
causative lesions on MRI were used for subgroup
analysis.

Successful surgery was defined as Engel Class | (“free
of disabling seizures”), the equivalent ILAE Class
1, or a description of seizure outcome equivalent
to these classifications, based on the last reported
follow-up visit.

Results

Search results

The literature search yielded a total of 20 eligible arti-
cles and a further four publications were identified
through a cross-reference check of the citations of the
included articles, as well as all publications in which
the eligible articles are cited.

The 24 included studies described a total of 82 patients,
with 15 different genetic causes of (mainly childhood-
onset) epilepsy, who underwent surgery. The success
rate of surgery varied widely amongst these different
genetic causes (table 7).

Genes related to channel function
and synaptic transmission

The literature search vyielded five articles that
described a total of 14 surgery cases with epilepsy
due to pathogenic variants in genes related to ion

channel function and synaptic transmission (table 2).
These epileptogenic mutations were found in the
voltage-gated sodium channels SCNTA and SCN1B
(Helbig et al., 2008), the gene CNTNAP2 which is
involved in AMPA-receptor trafficking and excitatory
neuronal network activity (Anderson et al., 2012; Varea
et al., 2015), and STXBP1, which is involved in the
release of neurotransmitters (Weckhuysen et al., 2013).
Epilepsy surgery did not lead to complete seizure free-
dom in any of the eight patients with SCN7A mutations
who underwent epilepsy surgery, even though six of
them had focal seizure semiology which co-localized
with MRI-visible lesions (Barba et al., 2014; Skjei et al.,
2015). Outcome data concerning specific seizure types
that were primarily targeted by the surgical proce-
dure (e.g. temporal lobe seizures in patients with HS)
were not provided in the publications included. Seven
of the patients with SCNTA mutation had a clinical
phenotype consistent with Dravet syndrome and the
other had a clinical phenotype most consistent with
genetic epilepsy with febrile seizures plus (GEFS+).
Two patients had no MRI-visible lesion.

Two patients underwent surgery for epilepsy due to
mutations in SCN71B and both patients became seizure-
free after temporal lobectomy (Scheffer et al., 2007);
one had underlying HS, whereas no brain abnormality,
on MRI or histopathological examination of resected
tissue, was detected in the other patient.

All three patients with epilepsy due to a homozygous
mutation in CNTNAP2 had a recurrence of seizures
after surgery (Strauss et al., 2006).

One patient with epilepsy due to a STBXPT muta-
tion underwent surgery since she had prominent
focal findings on EEG, despite having no abnormalities
on MRI. Epilepsy surgery did not lead to cessa-
tion of seizures although her seizure frequency had
decreased (Weckhuysen et al.,, 2013). Pathology of the
resected tissue revealed FCD.

Overall, surgery was successful regarding the con-
trol of seizures for only two of 14 patients (14%)
with pathogenic variants in genes related to chan-
nelopathies and disorders of synaptic transmission.

mTOR pathway genes

The search yielded 10 articles that described a total
of 30 patients who underwent surgery for epilepsy in
relation to mutations in the following mTOR pathway
genes: DEPDC5, PTEN, PIK3CA, AKT3, NPRL2, NPRL3,
and mTOR itself (table 3). In 12 patients, germline muta-
tions were found in DEPDC5, PTEN, NPRL2 or NPRL3
genes, whereas in 18 patients (somatic or mosaic)
mutations were detected in resected tissue, involving
the genes PIK3CA, AKT3, and mTOR.

Epilepsy surgery controlled seizures completely in
seven of 12 patients with mutations in DEPDC5, PTEN,
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Table 1A. Success rates of epilepsy surgery for patients with different genetic causes (germline mutations)

of epilepsy.
Genetic cause MRI-positive MRI-negative Total group
seizure-free/total seizure-free/total  seizure-free/total
SCNTA FCD: 0/2 0/2 0/8
HS: 0/2
Encephalomalacia: 0/1
Subcortical area of
Pathogenic variants of abnormal signal: 0/1
genes related to ion
channel function and SCN18B HS: 171 71 212
synaptic transmission
CNTNAP2 HS: 072 0/1 0/3
STXBP1 - 071 071
Overall 1/9 1/5 2/14 (14%)
DEPDC5 FCD: 3/6 2/3 5/9
PTEN HME: 1/1 - Al
Pathogenic variants NPRL2 ) 01 01
of mTOR pathway
genes NPRL3 FCD: 1/1 - 1/1
Overall 5/8 2/4 7/12 (58%)
Microdeletions HS: 9/10 0/2 9112
Neurofibromatosis FCD: 2/2 17 12/21
type 1 HS: 4/6
Polymicrogyria: 0/1
Other genetic causes Tumour: 5/11
of epileps
prepsy Fragile-X syndrome HS: 2/2 - 2/2
Mitochondrial HS: 1/3 - 13
mutations
Overall 23/35 13 24/38 (63%)
Total 29/52 (56%) 4/12 (33%) 33/64(52%)

FCD: focal cortical dysplasia; HS: hippocampal sclerosis. HME: hemimegalencephaly.

NPRL2 or NPRL3, of whom eight had a lesion on MRI
(Baulac et al., 2015; Carvill et al., 2015; Jansen et al.,
2015; Scerri et al., 2015; Weckhuysen et al., 2016). Three
more patients had a significantimprovementin seizure
frequency, whereas two patients had no improvement.
Fifteen of 18 patients with somatic or mosaic muta-
tions in PIK3CA, AKT3 or mTOR, who were all reported
to have lesions on MRI, became seizure-free after
epilepsy surgery (Lee et al., 2012; Poduri et al., 2012;
Conti et al., 2015; Jansen et al.,, 2015; Leventer et
al., 2015; Nakashima and Saitsu, 2015). One patient

reported some improvement, in another monthly
seizures persisted, and the last patient did not become
seizure-free, however, outcome was not further
specified.

After examination of histology in relation to MRI
findings, 19 of the 30 patients (somatic/mosaic or
germline combined) had focal cortical dysplasia (FCD)
due to mTOR pathway pathogenic variants as a struc-
tural substrate of epilepsy, whereas 10 other patients
had hemimegalencephaly as the structural cause of
their epilepsy. One patient had normal MRI and
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Table 1B. Success rates of epilepsy surgery for patients with different genetic causes (somatic mutations)

of epilepsy.
Genetic cause MRI-positive MRI-negative Total group
seizure-free/total seizure-free/total seizure-free/total
PIK3CA HME: 5/5 6/6
FCD: 1/1
Pathogenic variants of mTOR AKT3 HME: 1/3 24
FCD: 1/1
pathway genes
mTOR HME: 111 718
FCD: 6/7
Total 15/18 (83%) - 15/18 (83%)

FCD: focal cortical dysplasia; HME: hemimegalencephaly.

histology. Epilepsy surgery successfully controlled
seizures in eight of the 10 patients with hemimega-
lencephaly (80%) and in 14 of the 19 patients with
FCD (74%). Epilepsy surgery was not successful for the
patient with normal MRI and histology.

Overall, epilepsy surgery completely controlled
seizures in seven of 12 patients (58%) with epilepsy
due to germline mutations in the mTOR pathway. The
success rate was 71% (22 of 30 patients) for germline
and somatic mutations combined.

Epilepsy due to other genetic causes

Eleven articles described a total of 38 patients (all but
three were positive for MRI lesions) who had epilepsy
in relation to the following other genetic causes:
microdeletions, neurofibromatosis type 1, fragile-X
syndrome, and mitochondrial mutations (table 4).
Twelve patients who underwent epilepsy surgery have
been reported with microdeletions, four of which
were identified in 16p13.11 (Catarino et al., 2011; Liu
et al., 2012). Nine of 12 patients (75%) became seizure-
free after surgery, one patient became seizure-free for
seven years after surgery, and the other two patients
experienced no improvement.

Twenty-one patients with neurofibromatosis type 1,
caused by mutations in NFT or microdeletions in
17q11.2 encompassing this gene, underwent epilepsy
surgery (Barba et al., 2013; Jang et al., 2013; Ostendorf
et al, 2013). These patients had a variety of
neurofibromatosis-related epileptogeniclesions, such
as HS or low-grade tumours. Epilepsy surgery success-
fully controlled seizures in 12 of 21 patients (57%) with
neurofibromatosis type 1.

Two patients with epilepsy due to Fragile-X syndrome,
both with HS, became seizure-free after epilepsy
surgery (Wouters et al., 2006; Kenmuir et al., 2015).

Three patients with epilepsy and mitochondrial muta-
tions, who all had HS (detected on MRI), underwent
epilepsy surgery; only one became seizure-free
(Niehusmann et al., 2011; Azakli et al., 2013).

MRI-negative patients with genetic epilepsy

A subgroup analysis of all MRI-negative patients with
genetic causes of epilepsy yielded a total of 12 patients
with mutations (all detected in blood, and not in tis-
sue) in SCNTA, SCN1B, CNTNAP2, STXBP1, DEPDC5,
and NPRL2, and microdeletions in 16p13.11, or neu-
rofibromatosis type 1 (table 7 and table 5).

Five MRI-negative patients had epilepsy due to
mutations in genes related to channelopathies and dis-
orders of synaptic transmission (Strauss et al., 2006;
Scheffer et al., 2007; Weckhuysen et al., 2013; Skjei et
al., 2015). According to the reports, surgery was consid-
eredinthese patients based on focal seizure semiology
in combination with consistent EEG source localization
and results from functional imaging (Scheffer et al.,
2007; Skjei et al., 2015), EEG (Weckhuysen et al., 2013)
or S-EEG results (Strauss et al., 2006). Surgery did not
successfully control seizures in any of these patients,
except in one with a mutation in SCNTB.

Surgery was performed in four MRI-negative patients
who had epilepsy due to mutations in the mTOR
pathway genes, DEPDC5 or NPRL2, and showed focal
abnormalities on EEG, S-EEG or PET (Baulac et al,,
2015; Carvill et al.,, 2015; Weckhuysen et al., 2016).
Two MRI-negative patients with DEPDC5 mutations
showed FCD on pathological examination and became
seizure-free after surgery, whereas surgery did not
successfully control seizures in one patient with a
pathology-negative DEPDC5 mutation and another
with a mutation in NPRL2 and FCD on pathological
examination.
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Epilepsy surgery did not successfully control seizures
in either of the two MRI-negative patients with
epilepsy due to a microdeletion in 16p13.11. These
patients underwent surgery for clinically presumed
HS, although neither had HS on pathological exam-
ination (Catarino et al., 2011; Liu et al., 2012). One
MRI-negative patient with epilepsy due to neurofibro-
matosis type 1, with focal abnormalities in the temporal
region on EEG and pathology revealing HS in resected
tissue, underwent epilepsy surgery and subsequently
became seizure-free (Barba et al., 2013).

After histological examination, five of the 12 MRI-
negative patients were shown to have features of FCD
(type la, lla, or not further specified), one patient had
HS, and another had a small epileptogenic hamar-
toma. Five of the 12 MRI-negative patients (42%) had
no abnormalities on histological examination.
Overall, a seizure freedom rate of 33% (4 of 12 patients)
was reported in the MRI-negative group; two with a
mutation in a mTOR pathway gene, one with a SCN1B
mutation, and one with an NFT mutation. Histolog-
ical examination showed a lesion in three of these
patients but no abnormality in the patient with the
SCN1B mutation. One of the five MRI-negative patients
without pathological abnormalities became seizure-
free after epilepsy surgery, whereas three of seven
MRI-negative patients with pathological abnormalities
became seizure-free.

Statistical analyses

Surgery was more successful for patients with mTOR
pathway mutations, compared to patients with muta-
tions in genes involved in channelopathies and
disorders of synaptic transmission (only patients with
germline mutations: 58% versus 14%; Chi-square=5.54;
df=1; p=0.019; germline and somatic mutations com-
bined: 73% versus 14%; Chi-square=13.42; df=1;
p<0.001; only patients with MRI-visible lesions: 77%
versus 11%; Chi-square=12.07; df=1; p<0.001). The dif-
ference in surgery success rate between patients with
MRI-visible lesions and MRI-negative patients was at
trend level (63% versus 33%, Chi-square=3.679; df=1;
p=0.055).

Discussion

In this systematic review, we provide an overview of
the reported seizure outcomes of patients with dif-
ferent genetic causes of refractory epilepsy who have
undergone epilepsy surgery. Not unexpectedly, there
was a large difference in success rate of epilepsy
surgery between patients with mutations in genes
related to channelopathies and disorders of synaptic
transmission and those with mutations in the mTOR

Epilepsy surgery and genetic epilepsy

pathway, even when somatic mutations were excluded
for analysis. This difference remains significant when
only MRI-positive cases are compared. mTOR path-
way genetic variants are thought to increase seizure
susceptibility due to abnormal neuronal migration
and growth, which leads to (micro)structural epilep-
togenic malformations of cortical development, such
as hemimegalencephaly and FCD (Jansen et al., 2015).
Such malformations are thought to arise from a com-
bination of a germline mTOR pathway mutation and
a somatic second-hit mutation in the same gene or
in a different gene of the mTOR pathway (Poduri et
al., 2013; Baulac et al., 2015). This typically results in
focal malformations, since the second hit usually only
affects part of the brain. It is reasonable to assume
that resection of such localised epileptogenic malfor-
mations could be a curative treatment for seizures,
as reflected by the relatively high surgical success
rate of patients with mTOR pathway mutations. It has
been estimated that 11% of all focal epilepsies are due
to germline mutations in the mTOR genes DEPDCS5,
NPRL2 and NPRL3 (Weckhuysen et al., 2016). Con-
sidering the associated high success rate of epilepsy
surgery, it could be of benefit to routinely screen for
such mutations in presurgical evaluation; particularly
in MRI-negative, but presumed lesional cases. Finding
mTOR pathway mutations would increase the chance
of identifying an underlying cryptic malformation of
cortical development, and thereby suggest surgical
candidacy. The high success rate (83%) of surgery
in patients with somatic/mosaic mTOR pathway gene
mutations is inherent to the fact that these patients
already had established epileptogenic lesions (FCD
and hemimegalencephaly); two factors associated with
good surgical outcome. Screening for somatic/mosaic
mutations in presurgical evaluation is more difficult
than for germline mutations. However, investigation
of mosaic mutations may be considered in samples
of blood, a buccal swab, or sputum using ultra-deep
sequencing (Qin et al., 2010).

Epilepsy surgery was almost never successful in
patients with epilepsy due to mutations in genes
involved in channelopathies and disorders of synap-
tic transmission. Germline mutations in these genes
involved in ion channel function and synaptic trans-
mission are likely to cause widespread aberrant
neuronal activity (Helbig et al., 2008), which is rarely
confined to a specific part of the brain. It is unlikely
that a local resection would be curative to prevent all
seizure types. Surgery did not lead to seizure free-
dom forany reported patientwith mutationsin SCN7A,
CNTNAP2or STXBPTin this series, despite focal semiol-
ogy for (atleastsome of their) seizures, and the fact that
most of the patients had coincident structural (possi-
bly) epileptogenic lesions. It is likely that these lesions
were either not directly related to the genetic cause of
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epilepsy or that the lesions accounted for only some
of the seizures. Possibly, surgery in these patients was
not aimed at curing all seizure types, but only targeted
seizures originating from a specific structural lesion.
However, such a goal was not specified in any of the
included articles, nor was the selective outcome for
these specific “targeted” seizures. The disappointing
overall seizure outcomes of surgery in patients with
mutations in this group of genes suggest a relative
contraindication for epilepsy surgery, particularly in
MRI-negative patients.

Surgery successfully controlled seizures in both
patients with mutations in SCN7B, one of whom was
MRI-negative. In mice, one of the two splice vari-
ants of Scnib is known to encode a secreted cell
adhesion molecule involved in neuronal pathfinding
during embryonic development, and epileptogenic
mutations in Scn7b result in a functional knockout
of this splice variant (Patino et al., 2011). Moreover,
Scn1b knockout mice exhibit defective neuronal pro-
liferation and migration in the hippocampus, which
precedes hyperexcitability (Brackenbury et al., 2013).
These findings suggest that SCN7B mutations may be
associated with structural epileptogenic abnormali-
ties, and focal resection may thus lead to favourable
surgery outcome, rather than directly influencing neu-
ronal excitability, as is the case for SCNTA mutations
(Helbig et al., 2008).

We found large differences in success rate of
surgery for epilepsy due to other genetic causes.
Epilepsy surgery effectively controlled seizures in
most described patients with epilepsy-associated
microdeletions. Most of these patients, however, had
HS as an underlying structural epileptogenic substrate,
whichis generally associated with a favourable surgical
outcome. Epilepsy surgery was effective in more than
half of the neurofibromatosis type 1 patients. Similar
to the situation in patients with pathogenic variants in
mTOR pathway genes, NFT is thought to affect only
those parts of the brain with a second-hit mutation
(Poduri et al., 2013), which could explain why resec-
tion of these affected parts can be curative. Epilepsy
surgery for patients with Fragile-X syndrome or mito-
chondrial mutations could effectively control seizures,
although only a few patients have been described.
Based on a subgroup analysis, we examined whether
epilepsy surgery could be effective for MRI-negative
patients with genetic epilepsy. Interestingly, MRI-
negative patients had a wide range of different genetic
causes (table 1), but surgical success rate tended to
be higher in cases with MRI showing visible lesions
(66%) than in MRI-negative cases (33%), which is in
line with previous studies (Téllez-Zenteno et al., 2010).
Interestingly, two patients were reported after success-
ful epilepsy surgery for genetic refractory epilepsy,
but histological examination of the resected tissue

Epilepsy surgery and genetic epilepsy

did not reveal any abnormalities. However, we can-
not exclude the possibility that subtle abnormalities
may have gone undetected due to sampling errors,
or that the resection may have removed crucial parts
of the epileptogenic non-lesional network. The out-
come of these patients suggests that the absence of
a detectable lesion on MRI in patients with genetic
abnormalities should not in itself be an absolute con-
traindication for epilepsy surgery.

It remains unclear whether structural lesions are truly
absent in MRI-negative patients, or whether their
apparent absence is simply based on limitations such
as the detection sensitivity threshold of MRI per-
formed or the experience of the radiologist (So and
Lee, 2014). In accordance with previous studies (Téllez-
Zenteno et al., 2010; So and Lee, 2014), we found that
most MRI-negative patients who underwent surgery
in this review had histological abnormalities sugges-
tive of MCD in the resected tissue. New MRI methods,
higher-field scanning, and post-processing techniques
have already shown that it is possible to detect epilep-
togenic lesions which were not previously visible on
conventional MRI scans, improving the identification
of surgical target areas and subsequently yielding
higher success rates in patients with genetic refractory
epilepsy.

There are a number of limitations to this system-
atic review. The low number of surgical cases for
most genetic causes hampers firm conclusions. Fur-
thermore, there is significant heterogeneity between
reported patient characteristics and surgical proce-
dures. The follow-up duration largely varies between
studies and is sometimes not reported. Another
source of heterogeneity stems from different muta-
tions within the same gene among patients, which
could potentially affect surgical outcome. Moreover,
differences of expertise in genetic analysis or surgery,
accessibility to genetic testing, and indications for
epilepsy surgery could relate to lower reporting and
different success rates of surgery. Although not explic-
itly stated in most studies, we assumed that reported
mutations were detected in blood, unless specified
otherwise. The extent of mosaicism and the effect
on the occurrence of a lesion and surgical outcome
remains unclear. In addition, publication bias, recall
bias, and selection bias due to the scarce number
of patients described in the literature cannot be
excluded;itis possible that unsuccessful surgery is less
likely to be reported.

Surgical candidacy, particularly for MRI-negative
patients, is still not easily determined. Some patients
are declined surgery because of a presumed non-
structural, genetic aetiology. Finding a germline or
mosaic mTOR gene mutation could justify continua-
tion of the presurgical diagnostic process. Others,
however, are offered resective surgery or invasive
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monitoring (sEEG) (because of presumed focal struc-
tural MRI-negative aetiology), although their epilepsy
may have been primarily caused by a geneticand more
diffuse aetiology, such as mutations in genes involved
in ion channel or neurotransmitter function. Genetic
testing is not yet routinely included in most surgical
evaluation programmes. Nevertheless, finding specific
gene mutations could prove valuable for the process of
selecting surgical candidates and counselling patients
on expected outcome. Larger and prospective stud-
ies are needed to further elucidate the importance of
detecting genetic mutations in patients who are con-
sidered possible candidates for epilepsy surgery. O

Supplementary data.
Summary didactic slides and supplementary tables are available
on the www.epilepticdisorders.com website.
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TEST YOURSELF

(1) Can all genetic variants underlying epilepsy be detected by DNA sequencing?

(2) How many patients with epilepsy due to mutations in mTOR pathway genes achieve seizure freedom after

(3) How many patients with epilepsy due to mutations in genes related to ion channel function and synaptic
transmission achieve seizure freedom after epilepsy surgery?

Note: Reading the manuscript provides an answer to all questions. Correct answers may be accessed on the
website, www.epilepticdisorders.com, under the section “The EpiCentre”.
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