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ABSTRACT – Encephalopathy related to Status Epilepticus during slow Sleep
(ESES) is a childhood epilepsy syndrome characterized by appearance of
cognitive and behavioural disturbances in conjunction with a striking acti-
vation of EEG epileptic abnormalities during sleep. The link between the
extreme amount of epileptic discharges during sleep and the deterioration
of cognitive functions and behavior is poorly understood. We hypothe-
size that the negative effects of ESES may depend on the impairment of
the synaptic homeostasis processes occurring during normal sleep and
that are particularly important in the developmental age. Sleep ensures
synaptic homeostasis by promoting synaptic weakening/elimination after
the increase of synaptic strength that occurs during wakefulness. Changes
in synaptic strength are reflected in the EEG by changes of sleep slow wave
activity (SWA). Recent studies in ESES have failed to show changes of sleep
SWA, particularly at the site of the epileptic focus, suggesting a spike-related
impairment of the homeostatic recovery of sleep. This impaired synaptic
homeostasis in the critical period of development may alter cortical wiring

ly, cognitive functions and behavior,
mpromise typical of ESES.

status epilepticus during slow sleep,
wave, synaptic downscaling, synaptic

information (Stickgold et al., 2000;
Walker et al., 2002; Fenn et al.,
and thereby disrupt, often irreversib
leading to the neuropsychological co
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learning, language acquisition
and memory consolidation. A
wealth of experimental data in
healthy adults and children have
demonstrated the positive effects
of post-training sleep in the
consolidation of recently learned

2003; Diekelmann and Born, 2010;
Schreiner and Rasch, 2017). These
works imply that chronic sleep
disturbances in the critical period
of brain maturation may have
adverse effects on learning and
development.
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Encephalopathy related to

n recent years, a growing body of evidence has
uggested that a sleep disruption due to epileptic
ctivity may play a role in the cognitive impairment
bserved in children suffering from epilepsy (Holmes
nd Lenck-Santini, 2006; Parisi et al., 2010; Chan et al.,
011; Urbain et al., 2013). Several studies have demon-
trated in benign focal epilepsies of childhood as
ell as in epileptic encephalopathies an association
etween cognitive and behavioural dysfunctions and

he amount of epileptic activity during NREM sleep,
upporting the hypothesis that epileptic discharges
uring NREM sleep can exert negative effects on cog-
itive abilities (Tassinari and Rubboli, 2006; Massa et
l., 2011; Ebus et al., 2011; Van Bogaert et al., 2012;
ilippini et al., 2013). Further support to this hypoth-
sis is provided by data showing that improvement of
ognitive abilities is strongly correlated with reduction
r disappearance of epileptiform discharges during
leep even though normalization of the EEG does
ot appear to be the only predictive factor (Soprano
t al., 1994). Yet, the pathophysiological mechanisms

inking the appearance of neuropsychological deficits
nd epileptic activity during sleep remain largely
peculative. Here we review some recent data on a
eculiar childhood epileptic syndrome that can repre-
ent a model for the investigation of the complex and
eciprocal interactions among epileptic activity, sleep
hysiology and cognitive functions in the develop-
ental age, i.e. the “Encephalopathy related to Status

pilepticus during slow Sleep” (ESES) and we discuss
ow these findings may provide some clues for the
nderstanding of the links between cognitive impair-
ent, sleep disruption, and epileptic activity during
REM sleep.

EG and cognition in ESES

SES is an age-dependent self-limited epileptic condi-
ion characterized by:

onset in infancy or childhood (with a peak around
he age of 4-5 years);

heterogeneous types of epileptic seizures;
a typical EEG pattern characterized by continuous

r subcontinuous epileptic activity during non REM
NREM) sleep that can last for several months or
ears;

variable neuropsychological regression (consisting
f IQ decrease, reduction of language), disturbances
f behavior (such as development of autistic features,
pileptic Disord, Vol. 21, Supplement 1, June 2019

sychotic states), and motor impairment occurring
n conjunction with the appearance of the abnormal
leep EEG pattern (Tassinari et al., 2000).
n spite of the favourable long-term prognosis of the
pilepsy and of the normalization of the EEG, cognitive
eficits and behavioural disorders may persist for life.

e
a
a
c
s
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s Epilepticus during slow Sleep: a link with sleep homeostasis?

striking feature of ESES is the extreme amount of
pileptic discharges occurring during sleep, up to a
pike-wave index (SWI) of 85-100% of the time spent in
REM sleep (figure 1). This feature led to the eponym
f “Electrical Status Epilepticus during Sleep” in the
riginal description by Patry, Lyagoubi and Tassinari

Patry et al., 1971). A few years later, Tassinari et al. (1977)
eporting an additional series of patients, proposed
hat the “status epilepticus during sleep” (i.e., SES) was
esponsible for an encephalopathy characterized pri-
arily by cognitive and behavioural dysfunctions and

amed it “Encephalopathy related to Status Epilepti-
us during slow Sleep” (i.e. ESES). The SES is thought
o have a focal cortical origin that acts as a trigger
or the spread of epileptic abnormalities through a
econdary bilateral synchrony mechanism (Blume and
illay, 1985; Kobayashi et al., 1994). A focal origin of the
pileptic discharges is suggested by the focal nature
f the main seizure type, by the observation of focal
EG activity in wakefulness or REM sleep, by intrac-
rebral EEG recordings (Solomon et al., 1993), by the
pike phase reversal and interhemispheric peak laten-
ies over unilateral regions (Morikawa et al., 1995),
nd by focal metabolic abnormalities demonstrated
y functional imaging studies (PET, SPECT, fMRI stud-

es) (Hirsch et al., 1990; Mouridsen et al., 1993; Maquet
t al., 1995; De Tiège et al., 2009; Siniatchkin et al.,
010). The focal epileptic activity would then engage
halamo-cortical networks underlying the slow oscil-
ations of sleep (Destexhe and Sejnowski, 2001) and
nhance their synchrony, promoting their evolution

nto spike-wave seizures (Amzica and Steriade, 2000)
see also Gibbs et al., p. p. S54-61). Changes in thala-

ic firing levels can also switch the cortical dynamics
rom a desynchronized to a synchronized state and
ontribute to the synchronization of spike-wave dis-
harges in the cortex (Hirata and Castro-Alamancos,
010; Liu et al., 2015). These mechanisms may play a
ole also in the progression and possibly in the main-
enance of SES. A role of the thalamus is also supported
y evidence of early thalamic injuries in children
ith ESES (Guzzetta et al., 2005; Sánchez Fernández
t al., 2012).
esides the peculiar sleep EEG pattern, the most

ntriguing aspect of ESES is the relationship between
he onset of SES and the appearance of an
ncephalopathy accompanied by prominent cogni-
ive and behavioural disturbances, which may persist
ermanently, or only partially recover, after the reso-

ution of SES and disappearance of seizures (Tassinari
S63

t al., 2000, 2012; Seegmüller et al., 2012; Caraballo et
l., 2013, see also Arzimanoglou and Cross, p.S71-5,
nd Dorris et al., p.S88-96). The onset of neuropsy-
hological symptoms follows closely the onset of
tatus epilepticus, and the degree and type of cogni-
ive/behavioural dysfunction seem to depend on the
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Male 11 years old

igure 1. An eleven-year-old boy suffering from ESES syndrome
ormal background activity and sporadic spikes in the right fro
REM sleep (right), extreme activation of diffuse spike-and wave

ndex: 87%).

uration and localization of the focal epileptic activ-
ty (Tassinari and Rubboli, 2006; Tassinari et al., 2012).
hese observations have led to the hypothesis that
pileptic discharges during sleep may disrupt cogni-
ive and/or motor functions, even when they remain
ubclinical. Indeed, such epileptic activity (Patry et
l., 1971), while originally considered “subclinical”
ecause of the lack of overt electro-clinical corre-

ations during sleep, becomes undoubtedly clinical
lbeit belatedly, due to its effects on cognition and
ehaviour during wakefulness. These concepts, pro-
osed by Tassinari et al. in 1977, have been assimilated

nto the recent definition of “epileptic encephalopa-
hy” by the International League Against Epilepsy
ILAE) Classification Task Force. This term encom-
asses not only the conditions with frequent seizures
ut also those with abundant “interictal” epileptiform
bnormalities in which epileptic activities “per se”
xert an effect in the development of severe cogni-
ive and behavioural impairments “above and beyond
hat might be expected from the underlying pathol-
gy alone” (Berg et al., 2010).

leep homeostasis and cognition

hat are the pathophysiological mechanisms by
64

hich prolonged epileptic activity during sleep leads
o the development of the cognitive impairment and
ehavioural derangement? An intriguing possibility is

hat the negative effects of ESES may be linked to
n excessive engagement of the process of synaptic
omeostasis thought to occur during normal sleep

Tassinari and Rubboli, 2006).

t
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r

1 sec

e the age of eight years. EEG during wakefulness (left) showed
region, sometimes with bifrontal or diffuse spreading. During
arges that occupied most of NREM sleep was noted (spike-wave

leep is a homeostatic process: the longer we stay
wake, the more intensely we need to sleep, and
nly sleep can lead to brain restoration after wakeful-
ess (Borbély and Achermann, 2005). Sleep need is
eflected in EEG slow wave activity (SWA, 1-4,5 Hz) dur-
ng NREM sleep in all mammalian species investigated
o far: SWA increases exponentially as a function
f prior wakefulness and decreases exponentially
uring sleep (Tobler, 2000; Borbély and Achermann,
005). In recent years, a number of studies have
hown that sleep homeostasis is closely related to
ortical plasticity processes (Tononi and Cirelli, 2014).
pecifically, wakefulness, which is typically associated
ith learning and memory formation, leads to a net

ncrease in synaptic strength and to cellular stress. By
ontrast, sleep promotes net synaptic depression and
enormalization, memory consolidation, and cellular
ecovery (Vyazovskiy et al., 2008; Maret et al., 2011;
ushey et al., 2011; Tononi and Cirelli, 2014; de Vivo
t al., 2017; Diering et al., 2017). Furthermore, both
uman and animal studies have demonstrated a link
etween changes in synaptic strength and sleep SWA.
net increase in synaptic strength during wakefulness

eads to stronger coupling and therefore increased
ynchrony among neurons, which is reflected in slow
aves of larger amplitude that are steeper during

leep (Esser et al., 2007; Vyazovskiy et al., 2009). On
he other hand, slow waves occurring during sleep
Epileptic Disord, Vol. 21, Supplement 1, June 2019

re thought to promote a progressive down-selection
f synapses, which in turn reduces the amplitude of
low waves and, under normal condition, reaches a
et point at which SWA is sufficiently low and down-
election stops (figure 2). Importantly, the homeostatic
egulation of sleep slow waves also has a local
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Figure 2. Summary of the synaptic homeostasis hypothesis: due to learning during the day, wakefulness leads to a net increase
in synaptic strength (red line increasing exponentially with time) in select neural circuits (red lines in the schematic of the brain).
Wakefulness-related synaptic potentiation is associated with increased need for energy and supplies and saturates the ability of
neurons to undergo further potentiation. Sleep at night leads to an overall decrease in synaptic strength (green lines), thus reducing
costs at the cellular level (energy, supplies) and at the system level (saturation). At night, the EEG slow waves are large and their slope
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s steep at the beginning of sleep (early sleep), reflecting higher
ynaptic potentiation. Multiunit activity (MUA) shows ON and O
s one neuron and each line is one spike). In late sleep, instead,
nd their slope is less steep, because neuronal connections have
ynchronously.

omponent. Learning tasks that produce local
trengthening of connections are followed by a local
ncrease in sleep slow waves (Huber et al., 2004),

hereas interventions that lead to non-physiological
ynaptic depression such as arm immobilization or
ow frequency TMS are followed by a local decrease
n slow wave activity (Huber et al., 2006) (reviewed in
ononi and Cirelli, 2014).

ynaptic plasticity and sleep
omeostasis

he link between synaptic plasticity and sleep home-
stasis is likely to be especially important during
evelopment. The architecture of synaptic connec-

ions in the cerebral cortex is wired and optimized
hroughout childhood and adolescence (Rakic et al.,
994). The balancing of synaptic strength across sleep
nd waking may thus be essential for cortical matura-
ion and thus normal cortical functioning. Intriguingly,
pileptic Disord, Vol. 21, Supplement 1, June 2019

leep slow wave activity peaks during childhood and
ecreases progressively in the course of adolescence

n a way that appears correlated with the occurrence of
ynaptic refinement in cortical circuits (Huttenlocher,
979; Feinberg, 1982; Jha et al., 2005; Campbell and
einberg, 2009; Nelson et al., 2013; Olini et al., 2013; de
ivo et al., 2014; Hoel et al., 2016). Moreover, the topo-

t
s
a
j
s
K
s

ling and synchrony among neurons due to wakefulness-related
riods occurring highly synchronously across neurons (each row
synaptic renormalization has occurred, slow waves are smaller
kened and neurons no longer undergo ON and OFF states very

raphic distribution of SWA during cortical maturation
ighlights the developmental changes in cortical plas-

icity: SWA is highest over posterior regions during
arly childhood and then shows a spatial shift to
nterior regions, reaching the frontal cortex in late
dolescence (Kurth et al., 2010). Critically, the matura-
ion of specific skills is predicted by the topographical
istribution of SWA, the more frontal the topography
f SWA, the better adolescents perform in tasks known

o be frontally-mediated (Kurth et al., 2012). Thus, both
uman and animal studies show a close correspon-
ence between the maturation of the cortex, SWA and
ehaviour.

mpaired synaptic homeostasis in ESES

he occurrence of massive spike wave activity dur-
ng slow wave sleep every night in children with
SES would be expected to interfere with sleep
omeostasis. A sensitive indicator of changes in synap-
S65

ic strength and associated sleep homeostasis is the
lope of sleep slow waves (Esser et al., 2007; Riedner et
l., 2007; Vyazovskiy et al., 2007). In healthy control sub-
ects (adults, adolescents and children), the slope of
low waves decreases across sleep (Riedner et al., 2007;
urth et al., 2010). Children suffering from ESES do not
how such a decrease, as if the homeostatic recovery
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Figure 3. Impairment of synaptic homeostasis in ESES (adapted from Bolsterli et al., 2011). (A) Slow wave detection method in ESES
tracing and extraction of the slope of the slow wave. Below: the tracing reproduces 15 s of the raw signal from one EEG lead during
NREM sleep. Circles indicate detected waves, bold red circles indicate waves entering the analysis and bold green circles indicate
waves that were excluded because they were part of a spike wave complex (spikes are indicated by small blue dots). Above: 5 s of
band-pass filtered signal of the same EEG lead are enlarged. Slow waves identified according to the method proposed by Riedner et al.
(2007) are indicated by bold red circles. In the inlet on the right, the extraction of the slope for the first of the two waves is illustrated.
The slope was defined as the amplitude of the negative peak divided by the time interval between the negative peak and the following
zero crossing (light grey circles). (B) Ascending slope as a function of amplitude in a control subject and in an ESES patient. Scatter
plots of the ascending slope of all selected slow waves against their amplitude in the first (blue dots for control, red dots for ESES
child) and last hour of sleep (light blue for control, pink for ESES child). For each hour, a regression line was fitted to the data (blue
and light blue for the control; red and pink for the ESES patient). Note that in the ESES patient, the line corresponding to the last
hour (pink) is hidden behind the red line corresponding to the first hour, indicating no changes in slope between the first and last
hour. On the contrary, a shift of the regression line across the night is observed in the control subject. The vertical black line indicates
the voltage (75 uV) at which the ascending slopes were compared between the first and last hour. (C) Changes of the slope of slow
waves during the night. Ascending slopes at an amplitude of 75 uV in the first and last hour of sleep are shown for control subjects
(left) and patients (middle). Solid lines indicate the group mean. Error bars illustrate s.e.m. In the right panel, the superimposition
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f the mean slope (± s.e.m.) of control subjects (blue line) and
etween patients and control subjects in the first hour of sleep, b

n the last hour of sleep, suggesting an impairment of the home
npaired t-test).

f sleep were impaired (Bolsterli et al., 2011) (figure 3).
follow-up study showed that the impairment was
ost severe at the epileptic focus and that this impair-
ent was positively correlated with the SWI (Bolsterli
einzle et al., 2014). Moreover, while healthy children
66

howed an increased recall of learned word pairs after
night of sleep, children with ESES showed instead
decrease (Urbain et al., 2011). In one child, hydro-

ortisone treatment normalized both the sleep EEG
nd overnight performance (another child whose EEG
as only partially improved showed no improvement),

uggesting that the impairment of sleep homeostasis

w
e
t
d
t
s
c

nts (red line) shows that the slope of slow waves did not differ
as significantly steeper in patients compared to control subjects
tic recovery of sleep in ESES (**p<0.001, paired t-test; *p<0.01,

ay be responsible for the lack of memory conso-
idation. Finally, Boelsterli et al. (2017) have recently
hown in children with idiopathic ESES that cogni-
ive/behavioural outcome might correlate with the
egree of impairment of the slope of the sleep slow
Epileptic Disord, Vol. 21, Supplement 1, June 2019

aves. Indeed, complete cognitive/behavioral recov-
ry after ESES was observed in those children in whom
he overnight decline of the slope of sleep slow waves
uring ESES active phase was partially preserved; on

he contrary, lack of decline of the slope of sleep
low waves was associated with persistent neuropsy-
hological deficits after ESES resolution. Interestingly,
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educed overnight slope decline of sleep slow waves
as been shown to be related to poorer learning during
akefulness also in adult patients with focal epilepsy

Boly et al., 2017).

pikes, synaptic homeostasis and
ognition

f normal sleep plays a fundamental role in synaptic
enormalization, it is natural to ask whether epilep-
ic activity during NREM sleep may interfere with the
omeostatic renormalization of synapses and pro-
uce instead abnormal synaptic potentiation. Such
bnormal plasticity, recurring nightly for months and
ears, might eventually lead to a severe impairment
f the cognitive functions and behaviour mediated by

he affected brain areas (Buzsaki, 1998; Tassinari and
ubboli, 2006; Romcy-Pereira et al., 2009). In animal
odels, epileptic discharges occurring during wake-

ulness lead to long-term synaptic potentiation (LTP)
Buzsáki, 1989; Leite et al., 2005; Romcy-Pereira et al.,
009) by hijacking the mechanisms of learning in a mal-
daptive manner, unrelated to environmental inputs.
t is likely that epileptic discharges occurring during
leep also induce plastic changes, although it is unclear
n which direction: potentiation, as is normally the case
n wakefulness, or depression, as is normally the case
n NREM sleep.
he SWA of NREM results from an ongoing alterna-
ion between a depolarized ‘up-state’, when neurons
re tonically, and a hyperpolarized ‘down-state’, when
eurons stop firing for hundreds of milliseconds

Amzica and Steriade, 1998). Laminar recordings of
ocal field potentials, and of multiple- and single-unit
ctivities during intracerebral recordings in humans
ave shown that the ‘up-state’ of sleep slow waves

s associated with multi-unit-activity bursts as well
s high-frequency oscillations (HFO) (Csercsa et al.,
010; Nir et al., 2011). In cortical areas heavily involved
n learning processes, SWA, slow wave slopes, and
he synchrony of HFO during the “up-state” increase
ogether. Intriguingly, a recent study in ESES has
emonstrated the occurrence of exaggerated HFO
elated to epileptic spikes (Kobayashi et al., 2010). Such
athological HFO occurring systematically throughout
REM sleep are likely to produce major abnormalities

n synaptic plasticity and impair the synaptic renormal-
zation processes.
pileptic Disord, Vol. 21, Supplement 1, June 2019

uch an impairment would be especially harmful dur-
ng the critical period of cortical maturation in child-
ood and pre-adolescence, which is characterized
y massive synaptogenesis, synaptic pruning, and the
efinement of synaptic circuits (Huttenlocher, 1979;
uttenlocher and Dabholkar, 1997; Petanjek et al.,

011; Liu et al., 2012). In this critical period, plastic

(
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hanges involve all cortical laminae and thalamo-
ortical inputs (Issa, 2014) and local increases of
earning-related SWA are strongest (Wilhelm et al.,
014). It is well-established that the maturation of
ortical circuits during adolescence occurs in paral-
el with a progressive reduction of SWA (Buchmann
t al., 2011; Campbell et al., 2011). Recently, com-
uter simulations have shown that this developmental
ecline of SWA can track activity-dependent synaptic
efinement that underlies the proper functioning of
eural circuits (Hoel et al., 2016). In animal models,

nterfering with cortical activity during NREM sleep
eads to a deterioration of previously acquired corti-
al adaptations (Frank et al., 2001). Altogether, these
ata suggest that a systematic impairment of synap-

ic renormalization during NREM sleep would lead
o profound, possibly irreversible changes in corti-
al wiring, which may thus represent an unfortunate
onsequence of “subclinical” epileptic activity in the
ctive phase of ESES. Such a model would provide
n explanation for the loss of acquired functions,
uch as language, and for the persistence of cogni-
ive and behavioural disturbances after the end of
SES. The report of prefrontal lobe growth during
he active phase in a patient with ESES may also be

macroscopic anatomical consequence of impaired
ynaptic renormalization during sleep (Kanemura et
l., 2009).
n summary, an impairment of synaptic renormal-
zation due to epileptic activity during NREM sleep
ould explain many of the clinical features in children
ith ESES, and possibly in other forms of child-
ood epilepsy with a striking increment of paroxysmal
bnormalities during NREM sleep or with altered slow
ave activity (e.g. West syndrome patients; Fattinger
t al., 2015). The clinical implication is that such “sub-
linical” abnormalities during critical developmental
eriods should be seriously considered, as they may
lter cortical wiring and thereby disrupt cognitive
nd behavioural functions irreversibly. Future stud-
es should explore whether in epileptic children with
igh SWI during sleep and absent or minor cogni-

ive disturbances, the reduction of the slope of the
low waves during sleep is preserved or minimally
ffected, reflecting a preservation or minimal pertur-
ance of synaptic renormalization. This realization
alls for careful testing, including neuropsychologi-
al and behavioural tools to detect selective or subtle
ognitive dysfunctions related to a highly focal ESES
S67

Kuki et al., 2014), that coupled with sophisticated neu-
oimaging, and the use of novel EEG indices, in addition
o SWI, such as the decline of slow wave slopes in
REM sleep, might be useful for a timely diagnosis

nd treatment, and might provide indirect information
n the cortical networks underlying specific cognitive

unctions (Tassinari et al., 2015). �
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