JLE

Epileptic Disorders

MENU

Current practice in diagnostic genetic testing of the epilepsies Volume 24, issue 5, October 2022

  • [1.] Beghi E, Giussani G, Nichols E, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(4): 357-75.
  • [2.] Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 1975; 16 (1): 1-66.
  • [3.] Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 2017; 58(4): 512-21.
  • [4.] Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol 2008; 7(3): 231-45.
  • [5.] Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 1998; 43(4): 435-45.
  • [6.] Howell KB, Eggers S, Dalziel K, Riseley J, Mandelstam S, Myers CT, et al. A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia 2018; 59(6): 1177-87.
  • [7.] Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet 2019; 27(3): 408-21.
  • [8.] Symonds JD, Zuberi SM, Stewart K, McLellan A, O’Regan M, MacLeod S, et al. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain 2019; 142(8): 2303-18.
  • [9.] Catarino CB, Liu JYW, Liagkouras I, Gibbons VS, Labrum RW, Ellis R, et al. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain 2011; 134(Pt 10): 2982-3010.
  • [10.] Balestrini S, Sisodiya SM. Audit of use of stiripentol in adults with Dravet syndrome. Acta Neurol Scand 2017; 135(1): 73-9.
  • [11.] Palmer EE, Schofield D, Shrestha R, Kandula T, Macintosh R, Lawson JA, et al. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: evidence of clinical utility and cost effectiveness. Mol Genet Genomic Med 2018; 6(2): 186-99.
  • [12.] Palmer EE, Howell K, Scheffer IE. Natural History Studies and Clinical Trial Readiness for Genetic Developmental and Epileptic Encephalopathies. Neurotherapeutics 2021; 18(3): 1432-44.
  • [13.] Jeffrey JS, Leathem J, King C, Mefford HC, Ross K, Sadleir LG. Developmental and epileptic encephalopathy: Personal utility of a genetic diagnosis for families. Epilepsia Open 2021; 6(1): 149-59.
  • [14.] Vears DF, Dunn KL, Wake SA, Scheffer IE. It’s good to know”: experiences of gene identification and result disclosure in familial epilepsies. Epilepsy Res 2015; 112:64-71.
  • [15.] Ottman R, Hirose S, Jain S, Lerche H, Lopes-Cendes I, Noebels JL, et al. Genetic testing in the epilepsies-Report of the ILAE Genetics Commission. Epilepsia 2010; 51(4): 655-70.
  • [16.] Helbig I, Heinzen EL, Mefford HC, the ILAE Genetics Commission. Primer Part 1-The building blocks of epilepsy genetics. Epilepsia 2016; 57(6): 861-8.
  • [17.] Niemi MEK, Martin HC, Rice DL, Gallone G, Gordon S, Kelemen M, et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 2018; 562(7726): 268-71.
  • [18.] Peljto AL, Barker-Cummings C, Vasoli VM, Leibson CL, Hauser WA, Buchhalter JR, et al. Familial risk of epilepsy: a population-based study. Brain 2014; 137(3): 795-805.
  • [19.] Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, et al. Genetic testing for the epilepsies: a systematic review. Epilepsia 2022; 63(2): 375-87.
  • [20.] Lemke JR, High-Throughput. Sequencing as first-tier diagnostics in congenital and early-onset disorders. JAMA Pediatr 2017; 171(9): 833.
  • [21.] Klau J, Abou Jamra R, Radtke M, Oppermann H, Lemke JR, Beblo S, et al. Exome first approach to reduce diagnostic costs and time - retrospective analysis of 111 individuals with rare neurodevelopmental disorders. Eur J Hum Genet 2022; 30(1): 117-25.
  • [22.] Jauss RT, Popp B, Platzer K, Jamra R. MorbidGenes-Panel-v2022-02.1 [Internet]. Zenodo, 2022. https://zenodo.org/record/6136995
  • [23.] Martin AR, Williams E, Foulger RE, Leigh S, Daugherty LC, Niblock O, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet 2019; 51(11): 1560-5.
  • [24.] Stark Z, Foulger RE, Williams E, Thompson BA, Patel C, Lunke S, et al. Scaling national and international improvement in virtual gene panel curation via a collaborative approach to discordance resolution. Am J Hum Genet 2021; 108(9): 1551-7.
  • [25.] DiStefano MT, Goehringer S, Babb L, Alkuraya FS, Amberger J, Amin M, et al. The gene curation coalition: a global effort to harmonize gene-disease evidence resources [Internet]. Medrxiv, 2022. http://medrxiv.org/lookup/doi/10.1101/2022.01.03.21268593
  • [26.] Thormann A, Halachev M, McLaren W, Moore DJ, Svinti V, Campbell A, et al. Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun 2019; 10(1): 2373.
  • [27.] Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 2016; 98(1): 149-64.
  • [28.] Helbig I, Riggs ER, Barry C-A, Klein KM, Dyment D, Thaxton C, et al. The clingen epilepsy gene curation expert panel-bridging the divide between clinical domain knowledge and formal gene curation criteria. Hum Mutat 2018; 39(11): 1476-84.
  • [29.] Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology 2021; 96(13): e1770-82.
  • [30.] Ibañez K, Polke J, Hagelstrom RT, Dolzhenko E, Pasko D, Thomas ERA, et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol 2022; 21(3): 234-45.
  • [31.] Bamshad MJ, Nickerson DA, Chong JX. Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet 2019; 105(3): 448-55.
  • [32.] Niestroj L-M, Perez-Palma E, Howrigan DP, Zhou Y, Cheng F, Saarentaus E, et al. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain 2020; 143(7): 2106-18.
  • [33.] Borlot F, Regan BM, Bassett AS, Stavropoulos DJ, Andrade DM. Prevalence of pathogenic copy number variation in adults with pediatric-onset epilepsy and intellectual disability. JAMA Neurol 2017; 74(11): 1301.
  • [34.] Olson H, Shen Y, Avallone J, Sheidley BR, Pinsky R, Bergin AM, et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75(6): 943-58.
  • [35.] Djémié T, Weckhuysen S, von Spiczak S, Carvill GL, Jaehn J, Anttonen A-K, et al. Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol Genet Genomic Med 2016; 4 (4): 457-64.
  • [36.] Borch LA, Parboosingh J, Thomas MA, Veale P. Reevaluating the first-tier status of fragile X testing in neurodevelopmental disorders. Genet Med 2020; 22(6): 1036-9.
  • [37.] Peters L, Depienne C, Klebe S. Familial adult myoclonic epilepsy (FAME): clinical features, molecular characteristics, pathophysiological aspects and diagnostic work-up. Medizinische Genetik 2022; 33(4): 311-8.
  • [38.] Dagli AI, Mathews J, Williams CA. Angelman Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. GeneReviews® [Internet]. University of Washington, Seattle: Seattle (WA), 1993. http://www. ncbi.nlm.nih.gov/books/NBK1144/
  • [39.] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405-24.
  • [40.] Lewis-Smith D, Galer PD, Balagura G, Kearney H, Ganesan S, Cosico M, et al. Modeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable. Epilepsia 2021; 62(6): 1293-305.
  • [41.] Stödberg T, Tomson T, Barbaro M, Stranneheim H, Anderlid B-M, Carlsson S, et al. Epilepsy syndromes, etiologies, and the use of next-generation sequencing in epilepsy presenting in the first 2 years of life: a population-based study. Epilepsia 2020; 61(11): 2486-99.
  • [42.] Benson KA, White M, Allen NM, Byrne S, Carton R, Comerford E, et al. A comparison of genomic diagnostics in adults and children with epilepsy and comorbid intellectual disability. Eur J Hum Genet 2020; 28(8): 1066-77.
  • [43.] Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G, et al. Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia 2020; 61(6): 1234-9.
  • [44.] Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol Syndromol 2016; 7(4): 210-9.
  • [45.] Demarest ST, Brooks-Kayal A. From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol 2018; 14(12): 735-45.
  • [46.] Truty R, Patil N, Sankar R, Sullivan J, Millichap J, Carvill G, et al. Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy. Epilepsia Open 2019; 4(3): 397-408.
  • [47.] McCormack M, McGinty RN, Zhu X, Slattery L, Heinzen EL, Costello DJ, et al. De novo mutations in patients with chronic ultra-refractory epilepsy with onset after age five years. Eur J Med Genet 2020; 63(1): 103625.
  • [48.] Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020; 22(2): 245-57.
  • [49.] Heyne HO, Baez-Nieto D, Iqbal S, Palmer DS, Brunklaus A, May P, et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci Transl Med 2020; 12(556): eaay6848.
  • [50.] Boßelmann CM, Hedrich UBS, Müller P, Sonnenberg L, Parthasarathy S, Helbig I, et al. Predicting the functional effects of voltage-gated potassium channel missense variants with multi-task learning [Internet]. Bioinformatics, 2021. http://biorxiv.org/lookup/doi/10.1101/2021.12.02.470894
  • [51.] Farmer GD, Gray H, Chandratillake G, Raymond FL, Freeman ALJ. Recommendations for designing genetic test reports to be understood by patients and non-specialists. Eur J Hum Genet 2020; 28(7): 885-95.
  • [52.] de Lange IM, Koudijs MJ, van ‘t Slot R, Sonsma ACM, Mulder F, Carbo EC, et al. Assessment of parental mosaicism in SCN1A -related epilepsy by single-molecule molecular inversion probes and next-generation sequencing. J Med Genet 2019; 56(2): 75-80.
  • [53.] Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15(7): 565-74.
  • [54.] Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMGSF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017; 19(2): 249-55.
  • [55.] Miller DT, Lee K, Gordon AS, Amendola LM, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23(8): 1391-8.
  • [56.] Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23(8): 1381-90.
  • [57.] Sanders MWCB, Lemmens CMC, Jansen FE, Brilstra EH, Koeleman BPC, Braun KPJ, et al. Implications of genetic diagnostics in epilepsy surgery candidates: A single-center cohort study. Epilepsia Open 2019; 4(4): 609-17.
  • [58.] Stevelink R, Sanders MWCB, Tuinman MP, Brilstra EH, Koeleman BPC, Jansen FE, et al. Epilepsy surgery for patients with genetic refractory epilepsy: a systematic review. Epileptic Disorders 2018; 20(2): 99-115.
  • [59.] Kiess W, Bornehag C-G, Gennings C, editors. Preliminaries [Internet]. Pediatr Adolesc Med 2018; 21: 1-8. https://www.karger.com/Article/FullText/481317
  • [60.] Hartley T, Lemire G, Kernohan KD, Howley HE, Adams DR, Boycott KM. New diagnostic approaches for undiagnosed rare genetic diseases. Annu Rev Genomics Hum Genet 2020; 21: 351-72.
  • [61.] Ye Z, Chatterton Z, Pflueger J, Damiano JA, McQuillan L, Harvey AS, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain. Brain Commun 2021; 3(1): fcaa235.
  • [62.] Pearson NM, Stolte C, Shi K, Beren F, Abul-Husn NS, Bertier G, et al. GenomeDiver: a platform for phenotype-guided medical genomic diagnosis. Genet Med 2021; 23(10): 1998-2002.
  • [63.] Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, et al. L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal 2019; 12(586): eaaw0936.
  • [64.] Krey I, von Spiczak S, Johannesen KM, Hikel C, Kurlemann G, Muhle H, et al. L-serine treatment is associated with improvements in behavior, EEG, and seizure frequency in individuals with GRIN-related disorders due to null variants. Neurotherapeutics 2022; 19(1): 334-41.
  • [65.] Møller RS, Liebmann N, Larsen LHG, Stiller M, Hentschel J, Kako N, et al. Parental mosaicism in epilepsies due to alleged de novo variants. Epilepsia 2019; 60(6): e63-6.
  • [66.] Myers CT, Hollingsworth G, Muir AM, Schneider AL, ThuesmunnZ, KnuppA, et al. Parental Mosaicism in “de novo” epileptic encephalopathies. N Engl J Med 2018; 378(17): 1646-8.
  • [67.] Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 2015; 14 (9): 956-66.
  • [68.] Sánchez Fernández I, Gaínza-Lein M, Lamb N, Loddenkemper T. Meta-analysis and cost-effectiveness of second-line antiepileptic drugs for status epilepticus. Neurology 2019; 92(20): e2339-48.
  • [69.] Mills PB, Camuzeaux SSM, Footitt EJ, Mills KA, Gissen P, Fisher L, et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137(Pt 5): 1350-60.
  • [70.] Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA, Wilson M, et al. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am J Hum Genet 2016; 99(6): 1325-37.
  • [71.] Koch J, Mayr JA, Alhaddad B, Rauscher C, Bierau J, Kovacs-Nagy R, et al. CAD mutations and uridine-responsive epileptic encephalopathy. Brain 2017; 140(2): 279-86.
  • [72.] Fox J, Thodeson DM, Dolce AM. Nicotine: a targeted therapy for epilepsy due to nAChR gene variants. J Child Neurol 2021; 36(5): 371-7.
  • [73.] Lossius K, de Saint Martin A, Myren-Svelstad S, Bjørnvold M, Minken G, Seegmuller C, et al. Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav 2020; 105: 106944.
  • [74.] Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014; 1(3): 190-8.
  • [75.] Gale JR, Kosobucki GJ, Hartnett-Scott KA, Aizenman E. Imprecision in precision medicine: differential response of a disease-linked GluN2A mutant to NMDA channel blockers. Front Pharmacol 2021; 12: 773455.
  • [76.] Amador A, Bostick CD, Olson H, Peters J, Camp CR, Krizay D, et al. Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain 2020; 143(7): 2039-57.
  • [77.] Syrbe S, Hedrich UBS, Riesch E, Djémié T, Müller S, Møller RS, et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 2015; 47(4): 393-9.
  • [78.] Hedrich UBS, Lauxmann S, Wolff M, Synofzik M, Bast T, Binelli A, et al. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy. Sci Transl Med 2021; 13(609): eaaz4957.
  • [79.] Pisano T, Numis AL, Heavin SB, Weckhuysen S, Angriman M, Suls A, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia 2015; 56(5): 685-91.
  • [80.] Sands TT, Balestri M, Bellini G, Mulkey SB, Danhaive O, Bakken EH, et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 2016; 57(12): 2019-30.
  • [81.] Nissenkorn A, Kornilov P, Peretz A, Blumkin L, Heimer G, Ben-Zeev B, et al. Personalized treatment with retigabine for pharmacoresistant epilepsy arising from a pathogenic variant in the KCNQ2 selectivity filter. Epileptic Disord 2021; 23(5): 695-705.
  • [82.] Orhan G, Bock M, Schepers D, Ilina EI, Reichel SN, Löffler H, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy: KCNQ2 defects in EE. Ann Neurol 2014; 75(3): 382-94.
  • [83.] Millichap JJ, Park KL, Tsuchida T, Ben-Zeev B, Carmant L, Flamini R, et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2016; 2(5): e96.
  • [84.] Vanoye CG, Desai RR, Ji Z, Adusumilli S, Jairam N, Ghabra N, et al. High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity. JCI Insight 2022; 7(5): e156314.
  • [85.] Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39(5): 508-12.
  • [86.] Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140(5): 1316-36.
  • [87.] Klepper J, Akman C, Armeno M, Auvin S, Cervenka M, Cross HJ, et al. Glut1 deficiency syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 2020; 5 (3): 354-65.
  • [88.] French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. The Lancet 2016; 388(10056): 2153-63.