JLE

Epileptic Disorders

MENU

Beneficial effects of the ketogenic diet on drug-resistant epileptic encephalopathy associated with a de novo NBEA pathogenic variant Volume 23, issue 5, October 2021

  • [1] Gilbert D.J., Engel H., Wang X., Grzeschik K.H., Copeland N.G., Jenkins N.A. The neurobeachin gene (Nbea) identifies a new region of homology between mouse central chromosome 3 and human chromosome 13q13. Mamm Genome. 1999;10:1030-1031.
  • [2] Wang X., Herberg F.W., Laue M.M., Wullner C., Hu B., Petrasch-Parwez E. Neurobeachin: a protein kinase A-anchoring, beige/Chediak-Higashi protein homolog implicated in neuronal membrane traffic. J Neurosci. 2000;20:8551-8565. 23
  • [3] Medrihan L., Rohlmann A., Fairless R., Andrae J., Döring M., Missler M. Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. J Physiol. 2009;587:5095-5106.
  • [4] Niesmann K., Breuer D., Brockhaus J., Born G., Wolff I., Reissner C. Dendritic spine formation and synaptic function require neurobeachin. Nat Commun. 2011;2:557.
  • [5] Volders K., Nuytens K., Creemers J.W. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr Mol Med. 2011;11:204-217.
  • [6] Barrett S., Beck J.C., Bernier R., Bisson E., Braun T.A., Casavant T.L. Collaborative linkage study of autism. Am J Med Genet. 1999;88:609-615.
  • [7] Steele M.M., Al-Adeimi M., Siu V.M., Fan Y.S. Brief report: a case of autism with interstitial deletion of chromosome 13. J Autism Dev Disord. 2001;31:231-234.
  • [8] Smith M., Woodroffe A., Smith R., Bisson E., Braun T.A., Casavant T.L. Molecular genetic delineation of a deletion of chromosome 13q12→q13 in a patient with autism and auditory processing deficits. Cytogenet Genome Res. 2002;98:233-239.
  • [9] Castermans D., Wilquet V., Parthoens E., Huysmans C., Steyaert J., Swinnen L. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet. 2003;40:352-356.
  • [10] De Rubeis S., He X., Goldberg A.P., Poultney C.S., Samocha K., Cicek A.E. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209-215.
  • [11] Iossifov I., O’Roak B.J., Sanders S.J., Ronemus M., Krumm N., Levy D. The contribution of coding mutations to autism spectrum disorder. Nature. 2014;515:216-221. de novo
  • [12] Bowling K.M., Thompson M.L., Amaral M.D., Finnila C.R., Hiatt S.M., Engel K.L. Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med. 2017;9:43.
  • [13] Nuytens K., Gantois I., Stijnen P., Iscru E., Laeremans A., Serneels L. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis. 2013;51:144-151.
  • [14] Wise A., Tenezaca L., Fernandez R.W., Schatoff E., Flores J., Ueda A. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion and impaired adult social behavior and activity patterns. J Neurogenet. 2015;29:135-143.
  • [15] Mulhern M.S., Stumpel C., Stong N., Brunner H.G., Bier L., Lippa N. NBEA: developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol. 2018;84:788-795.
  • [16] Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405-424.
  • [17] Samocha K.E., Robinson E.B., Sanders S.J. A framework for the interpretation of mutation in human disease. Nat Genet. 2014;46:944-950. de novo
  • [18] Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285-291.
  • [19] Fromer M., Pocklington A.J., Kavanagh D.H., Williams H.J., Dwyer S., Gormley P. mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179-184. De novo
  • [20] Mariman E.C., Bouwman F.G., Aller E.E., Van Baak M.A., Wang P. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol Genomics. 2015;47:225-231.
  • [21] Lelieveld S.H., Reijnders M.R., Pfundt R., Yntema H.G., Kamsteeg E.J., de Vries P. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19:1194-1196.
  • [22] Prevalence and architecture of mutations in developmental disorders. Nature. 2017;542:433-438. Deciphering Developmental Disorders, Studyde novo
  • [23] mutations in epileptic encephalopathies. Nature. 2013;501:217-221. Epi4K Consortium Epilepsy Phenome/Genome ProjectDe novo
  • [24] mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95:360-370. EuroEPINOMICS-RES Consortium Epilepsy Phenome/Genome Project, Epi4K ConsortiumDe novo
  • [25] Oliver K.L., Lukic V., Freytag S., Scheffer I.E., Berkovic S.F., Bahlo M. prioritization based on coexpression can aid epileptic encephalopathy gene discovery. Neurol Genet. 2016;2:e51. In silico
  • [26] Monlong J., Girard S.L., Meloche C., Cadieux-Dion M., Andrade D.M., Lafreniere R.G. Global characterization of copy number variants in epilepsy patients from whole genome sequencing. PLoS Genet. 2018;14:e1007285.
  • [27] Maini I., Iodice A., Spagnoli C., Salerno G.G., Bertani G., Frattini D., Fusco C. Expanding phenotype of PRRT2 gene mutations: a new case with epilepsy and benign myoclonus of early infancy. Eur J Paediatr Neurol. 2016;20:454-456.
  • [28] Spagnoli C., Salerno G.G., Iodice A., Frattini D., Pisani F., Fusco C. KCNQ2 encephalopathy: a case due to a deletion. Brain Dev. 2018;40:65-68. de novo
  • [29] Spagnoli C., Frattini D., Rizzi S., Salerno G.G., Fusco C. Early infantile SCN1A epileptic encephalopathy: expanding the genotype-phenotype correlations. Seizure. 2019;65:62-64.
  • [30] Iodice A., Spagnoli C., Frattini D., Salerno G.G., Rizzi S., Fusco C. Biallelic SZT2 mutation with early onset of focal status epilepticus: useful diagnostic clues other than epilepsy, intellectual disability and macrocephaly. Seizure. 2019;69:296-297.
  • [31] Chow J., Jensen M., Amini H., Hormozdiari F., Penn O., Shifman S. Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med. 2019;11:65.
  • [32] Kossoff E.H., Zupec-Kania B.A., Auvin S., Ballaban-Gil K.R., Christina Bergqvist A.G., Blackford R. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3:175-192.
  • [33] Barnerias C., Saudubray J.M., Touati G., De Lonlay P., Dulac O., Ponsot G. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1-9.
  • [34] Youngson N.A., Morris M.J., Ballard J.W.O. The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure. 2017;52:15-19.
  • [35] Neal E.G., Chaffe H., Schwartz R.H., Lawson M.S., Edwards N., Fitzsimmons G. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500-506.
  • [36] Sourbron J., Klinkenberg S., Van Kuijk S.M.J., Lagae L., Lambrechts D., Braakman H.M.H. Ketogenic diet for the treatment of pediatric epilepsy: review and meta-analysis. Childs Nerv Syst. 2020;36:1099-1109.