JLE

Virologie

MENU

Le transporteur d’acides biliaires NTCP, un acteur majeur dans l’infection par les virus humains des hépatites offrant de nouvelles perspectives thérapeutiques Volume 22, numéro 1, Janvier-Février 2018

  • [1] El-Serag H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264-73.
  • [2] Wedemeyer H., Dore G.J., Ward J.W. Estimates on HCV disease burden worldwide - filling the gaps. J Viral Hepat. 2015;22:1-5.
  • [3] Trepo C., Chan H.L., Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053-2063.
  • [4] Zeisel M.B., Lucifora J., Mason W.S. Towards an HBV cure : state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut. 2015;64:1314-1326.
  • [5] Wedemeyer H., Manns M.P. Epidemiology, pathogenesis and management of hepatitis D : update and challenges ahead. Nat Rev Gastroenterol Hepatol. 2010;7:31-40.
  • [6] Trepo C., Chan H.L., Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053-2063.
  • [7] Habersetzer F., Moenne-Loccoz R., Meyer N. Loss of hepatitis B surface antigen in a real-life clinical cohort of patients with chronic hepatitis B virus infection. Liver Int. 2015;35:130-139.
  • [8] Chung R.T., Baumert T.F. Curing chronic hepatitis C–the arc of a medical triumph. N Engl J Med. 2014;370:1576-1578.
  • [9] Zeisel M.B., Lupberger J., Fofana I., Baumert T.F. Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol. 2013;58:375-384.
  • [10] Baumert T.F., Verrier E.R., Nassal M., Chung R.T., Zeisel M.B. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol. 2015;14:41-46.
  • [11] Nathan C. Fresh approaches to anti-infective therapies. Sci Transl Med. 2012;4:140sr2.
  • [12] Mailly L., Xiao F., Lupberger J. Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nat Biotechnol. 2015;33:549-554.
  • [13] Bogomolov P., Alexandrov A., Voronkova N. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B : First results of a phase Ib/IIa study. J Hepatol. 2016;65:490-498.
  • [14] Urban S., Bartenschlager R., Kubitz R., Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147:48-64.
  • [15] Colpitts C.C., Verrier E.R., Baumert T.F. Targeting viral entry for treatment of hepatitis B and C virus infections. ACS Infect Dis. 2015;1:420-427.
  • [16] Henrich T.J., Kuritzkes D.R. HIV-1 entry inhibitors : recent development and clinical use. Curr Opin Virol. 2013;3:51-57.
  • [17] Geyer J., Wilke T., Petzinger E. The solute carrier family SLC10 : more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol. 2006;372:413-431.
  • [18] Claro da Silva T., Polli J.E., Swaan P.W. The solute carrier family 10 (SLC10) : beyond bile acid transport. Mol Aspects Med. 2013;34:252-269.
  • [19] Appelman M.D., Chakraborty A., Protzer U., McKeating J.A., van de Graaf S.F. N-Glycosylation of the Na + -Taurocholate Cotransporting Polypeptide (NTCP) Determines Its Trafficking and Stability and Is Required for Hepatitis B Virus Infection. PLoS One. 2017;12:e0170419.
  • [20] Nkongolo S., Ni Y., Lempp F.A. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol. 2014;60:723-731.
  • [21] Dong Z., Ekins S., Polli J.E. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP). Mol Pharm. 2013;10:1008-1019.
  • [22] Alrefai W.A., Gill R.K. Bile acid transporters : structure, function, regulation and pathophysiological implications. Pharm Res. 2007;24:1803-1823.
  • [23] Zollner G., Fickert P., Silbert D. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol. 2003;38:717-727.
  • [24] Zollner G., Fickert P., Zenz R. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology. 2001;33:633-646.
  • [25] Kojima H., Nies A.T., Konig J. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J Hepatol. 2003;39:693-702.
  • [26] Bechmann L.P., Kocabayoglu P., Sowa J.P. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology. 2013;57:1394-1406.
  • [27] Kang J., Wang J., Cheng J. Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance. Oncotarget. 2017;8:56041-56050.
  • [28] Pan W., Song I.S., Shin H.J. Genetic polymorphisms in Na + -taurocholate co-transporting polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations. Xenobiotica. 2011;41:501-510.
  • [29] Anwer M.S. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology. 2014;60:1090-1097.
  • [30] Anwer M.S. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology. 2004;39:581-590.
  • [31] Stross C., Helmer A., Weissenberger K. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide. Am J Physiol Gastrointest Liver Physiol. 2010;299:G320-G328.
  • [32] Zeisel M.B., Lucifora J., Mason W.S. Towards an HBV cure : state-of-the-art and unresolved questions--report of the ANRS workshop on HBV cure. Gut. 2015;64:1314-1326.
  • [33] Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672-686.
  • [34] Urban S. Liver capsule : Entry and entry inhibition of hepatitis B virus and hepatitis delta virus into hepatocytes. Hepatology. 2016;63:633.
  • [35] Kann M., Schmitz A., Rabe B. Intracellular transport of hepatitis B virus. World J Gastroenterol. 2007;13:39-47.
  • [36] Rabe B., Glebe D., Kann M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J Virol. 2006;80:5465-5473.
  • [37] Nassal M. HBV cccDNA : viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64:1972-1984.
  • [38] Jones S.A., Clark D.N., Cao F., Tavis J.E., Hu J. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming. J Virol. 2014;88:1564-1572.
  • [39] Dandri M., Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61:16-17.
  • [40] Watanabe T., Sorensen E.M., Naito A., Schott M., Kim S., Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A. 2007;104:10205-10210.
  • [41] Taylor J.M. Virology of hepatitis D virus. Semin Liver Dis. 2012;32:195-200.
  • [42] Rizzetto M., Hoyer B., Canese M.G., Shih J.W., Purcell R.H., Gerin J.L. delta Agent : association of delta antigen with hepatitis B surface antigen and RNA in serum of delta-infected chimpanzees. Proc Natl Acad Sci U S A. 1980;77:6124-6128.
  • [43] Sureau C. The use of hepatocytes to investigate HDV infection : the HDV/HepaRG model. Methods Mol Biol. 2010;640:463-473.
  • [44] Chou H.C., Hsieh T.Y., Sheu G.T., Lai M.M. Hepatitis delta antigen mediates the nuclear import of hepatitis delta virus RNA. J Virol. 1998;72:3684-3690.
  • [45] Chang J., Nie X., Chang H.E., Han Z., Taylor J. Transcription of hepatitis delta virus RNA by RNA polymerase II. J Virol. 2008;82:1118-1127.
  • [46] Macnaughton T.B., Shi S.T., Modahl L.E., Lai M.M. Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA polymerases. J Virol. 2002;76:3920-3927.
  • [47] Flores R., Owens R.A., Taylor J. Pathogenesis by subviral agents : viroids and hepatitis delta virus. Curr Opin Virol. 2016;17:87-94.
  • [48] Sureau C., Negro F. The hepatitis delta virus : Replication and pathogenesis. J Hepatol. 2016;64:S102-S116.
  • [49] Patient R., Hourioux C., Roingeard P. Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell Microbiol. 2009;11:1561-1570.
  • [50] Verrier E.R., Colpitts C.C., Schuster C., Zeisel M.B., Baumert T.F. Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses. 2016;8:261.
  • [51] Schulze A., Gripon P., Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology. 2007;46:1759-1768.
  • [52] Verrier E.R., Colpitts C.C., Bach C. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology. 2016;63:35-48.
  • [53] Gripon P., Le Seyec J., Rumin S., Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology. 1995;213:292-299.
  • [54] Blanchet M., Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol. 2007;81:5841-5849.
  • [55] Engelke M., Mills K., Seitz S. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology. 2006;43:750-760.
  • [56] Petersen J., Dandri M., Mier W. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008;26:335-341.
  • [57] Gripon P., Cannie I., Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79:1613-1622.
  • [58] Yan H., Zhong G., Xu G. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012;1:e00049.
  • [59] Ni Y., Lempp F.A., Mehrle S. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146:1070-1083.
  • [60] Verrier E.R., Colpitts C.C., Sureau C., Baumert T.F. Hepatitis B virus receptors and molecular drug targets. Hepatol Int. 2016;10:567-573.
  • [61] Li W., Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes : Basic insights and clinical implications. J Hepatol. 2016;64:S32-40.
  • [62] Kuiken T., Holmes E.C., McCauley J. Host species barriers to influenza virus infections. Science. 2006;312:394-397.
  • [63] Yan H., Peng B., He W. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol. 2013;87:7977-7991.
  • [64] Schieck A., Schulze A., Gahler C. Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology. 2013;58:43-53.
  • [65] Konig A., Doring B., Mohr C. Kinetics of the bile acid transporter and hepatitis B virus receptor Na + /taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J Hepatol. 2014;61:867-875.
  • [66] Oehler N., Volz T., Bhadra O.D. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60:1483-1493.
  • [67] Yan H., Peng B., Liu Y. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol. 2014;88:3273-3284.
  • [68] Peng L., Zhao Q., Li Q. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology. 2015;61:1251-1260.
  • [69] Hu H.H., Liu J., Lin Y.L. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut. 2016;65:1514-1521.
  • [70] Werle-Lapostolle B., Bowden S., Locarnini S. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology. 2004;126:1750-1758.
  • [71] Moyo B., Bloom K., Scott T., Ely A., Arbuthnot P. Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus. Virus Res. 2017. pii: S0168-1702(16)30733-X. doi: 10.1016/j.virusres.2017.01.003. [EAP]
  • [72] Farci P., Mandas A., Coiana A. Treatment of chronic hepatitis D with interferon alfa-2a. N Engl J Med. 1994;330:88-94.
  • [73] Lutgehetmann M., Mancke L.V., Volz T. Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology. 2012;55:685-694.
  • [74] Volz T., Allweiss L., Ben M.M. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol. 2013;58:861-867.
  • [75] Watashi K., Sluder A., Daito T. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology. 2014;59:1726-1737.
  • [76] Lucifora J., Esser K., Protzer U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antiviral Res. 2013;97:195-197.
  • [77] Blanchet M., Sureau C., Labonte P. Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle. Antiviral Res. 2014;106:111-115.
  • [78] Ko C., Park W.J., Park S. The FDA approved drug irbesartan inhibits HBV-infection in HepG2 cells stably expressing sodium taurocholate co-transporting polypeptide. Antivir Ther. 2015;20:835-842.
  • [79] Huang H.C., Tao M.H., Hung T.M., Chen J.C., Lin Z.J., Huang C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res. 2014;111:100-111.
  • [80] Kaneko M., Watashi K., Kamisuki S. A Novel Tricyclic Polyketide, Vanitaracin A Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide. J Virol. 2015;89:11945-11953.
  • [81] Slijepcevic D., van de Graaf S.F. Bile Acid Uptake Transporters as Targets for Therapy. Dig Dis. 2017;35:251-258.
  • [82] Shimura S., Watashi K., Fukano K. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol. 2017;66:685-692.
  • [83] Verrier E.R., Schuster C., Baumert T.F. Advancing hepatitis B virus entry inhibitors. J Hepatol. 2017;66:677-679.
  • [84] Bartenschlager R., Penin F., Lohmann V., Andre P. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 2011;19:95-103.
  • [85] Crouchet E., Baumert T.F., Schuster C. Hepatitis C virus-apolipoprotein interactions : molecular mechanisms and clinical impact. Expert Rev Proteomics. 2017;14:593-606.
  • [86] Baumert T.F., Meredith L., Ni Y. Entry of hepatitis B and C viruses - recent progress and future impact. Curr Opin Virol. 2014;4C:58-65.
  • [87] Barth H., Schafer C., Adah M.I. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem. 2003;278:41003-41012.
  • [88] Lefevre M., Felmlee D.J., Parnot M., Baumert T.F., Schuster C. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One. 2014;9:e95550.
  • [89] Shi Q., Jiang J., Luo G. Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol. 2013;87:6866-6875.
  • [90] Owen D.M., Huang H., Ye J., Gale M. Jr. Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology. 2009;394:99-108.
  • [91] Zeisel M.B., Koutsoudakis G., Schnober E.K. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology. 2007;46:1722-1731.
  • [92] Pileri P., Uematsu Y., Campagnoli S. Binding of hepatitis C virus to CD81. Science. 1998;282:938-941.
  • [93] Lupberger J., Zeisel M.B., Xiao F. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17:589-595.
  • [94] Farquhar M.J., Hu K., Harris H.J. Hepatitis C virus induces CD81 and claudin-1 endocytosis. J Virol. 2012;86:4305-4316.
  • [95] Sainz B. Jr., Barretto N., Martin D.N. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med. 2012;18:281-285.
  • [96] Colpitts C.C., Schang L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol. 2014;88:7806-7817.
  • [97] Verrier E.R., Colpitts C.C., Bach C. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Rep. 2016;17:1357-1368.
  • [98] Podevin P., Rosmorduc O., Conti F. Bile acids modulate the interferon signalling pathway. Hepatology. 1999;29:1840-1847.
  • [99] Graf D., Haselow K., Munks I., Bode J.G., Haussinger D. Inhibition of interferon-alpha-induced signaling by hyperosmolarity and hydrophobic bile acids. Biol Chem. 2010;391:1175-1187.
  • [100] Smith S., Weston S., Kellam P., Marsh M. IFITM proteins-cellular inhibitors of viral entry. Curr Opin Virol. 2014;4:71-77.
  • [101] Wilkins C., Woodward J., Lau D.T. IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology. 2013;57:461-469.
  • [102] Narayana S.K., Helbig K.J., McCartney E.M. The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, and IFITM3 Inhibit Hepatitis C Virus Entry. J Biol Chem. 2015;290:25946-25959.