JLE

Innovations & Thérapeutiques en Oncologie

MENU

Immunothérapie anti-SIRPα/CD47 en oncologie Volume 4, numéro 5-6, Septembre-Décembre 2018

  • [1] Pitt J.M., Vétizou M., Daillère R. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255-1269.
  • [2] Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991-998.
  • [3] Berraondo P., Minute L., Ajona D., Corrales L., Melero I., Pio R. Innate immune mediators in cancer: between defense and resistance. Immunol Rev. 2016;274:290-306.
  • [4] Talmadge J.E., Gabrilovich D.I. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739-752.
  • [5] Murdoch C., Muthana M., Coffelt S.B., Lewis C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618-631.
  • [6] Kumar V., Patel S., Tcyganov E., Gabrilovich D.I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208-220.
  • [7] Petitprez F., Sun C.M., Lacroix L., Sautès-Fridman C., de Reyniès A., Fridman W.H. Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol. 2018;8:390.
  • [8] Fridman W.H., Zitvogel L., Sautès-Fridman C., Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717-734.
  • [9] Zhang S., Ma X., Zhu C., Liu L., Wang G., Yuan X. The role of myeloid-derived suppressor cells in patients with solid tumors: a meta-analysis. PLoS One. 2016;11:e0164514.
  • [10] Zhang Q.W., Liu L., Gong C.Y. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7:e50946.
  • [11] Jackute, Zemaitis M., Pranys D. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol. 2018;19:3.
  • [12] Yuan X., Zhang J., Li D. Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis. Gynecol Oncol. 2017;147:181-187.
  • [13] Pantano F., Berti P., Guida F.M. The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med. 2013;17:1415-1421.
  • [14] Weiskopf K., Weissman I.L. Macrophages are critical effectors of antibody therapies for cancer. mAbs. 2015;7:303-310.
  • [15] Brown E.J, Frazier W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11:130-135.
  • [16] Oldenborg P.A., Zheleznyak A., Fang Y.F., Lagenaur C.F., Gresham H.D., Lindberg F.P. Role of CD47 as a marker of self on red blood cells. Science. 2000;288:2051-2054.
  • [17] Willingham S.B., Volkmer J.P., Gentles A.J. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 2012;109:6662-6667.
  • [18] Xu M.M., Pu Y., Han D. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 2017;47:363-373.
  • [19] Tsai R.K., Discher D.E. Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 2008;180:989-1003.
  • [20] Sosale N.G., Rouhiparkouhi T., Bradshaw A.M., Dimova R., Lipowsky R., Discher D.E. Cell rigidity and shape override CD47's ‘self’-signaling in phagocytosis by hyperactivating myosin-II. Blood. 2015;125:542-552.
  • [21] Woo S.R., Rouhiparkouhi T., Bradshaw A.M., Dimova R., Lipowsky R., Discher D.E. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830-842.
  • [22] Liu X., Pu Y., Cron K. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21:1209-1215.
  • [23] Petrova P.S., Viller N.N., Wong M. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res. 2017;23:1068-1079.
  • [24] Liu J., Wang L., Zhao F. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PloS One. 2015;10:e0137345.
  • [25] Kauder S.E., Kuo T.C., Harrabi O. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One. 2018;13:e0201832.
  • [26] Zheng B, Wong P, Yang W, et al. CC-90002 (anti-CD47 antibody) in vivo anti-tumor activity is associated with an increase in M1-polarized macrophages. Cancer Res 2017; 77(13 Suppl): Abstract 2009.
  • [27] Holland P.M., Normant A., Adam A. CD47 monoclonal antibody SRF231 is a potent inducer of macrophage-mediated tumor cell phagocytosis and reduces tumor burden in murine models of hematologic malignancies. Blood. 2016;128:1843.
  • [28] Advani R.H., Flinn I., Popplewell L. Activity and tolerabilty of the first-in-class anti-CD47 antibody Hu5F9-G4 with rituximab tolerated in relapsed/refractory non-Hodgkin lymphoma: Initial phase 1b/2 results. J Clin Oncol. 2018;36:7504.
  • [29] Sikic B.I., Narayanan S., Colevas D.A. A first-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2016;34:3019.
  • [30] Lindberg F.P., Bullard D.C., Caver T.E., Gresham H.D., Beaudet A.L., Brown E.J. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science. 1996;274:795-798.
  • [31] Bergström S.E., Bergdahl E., Sundqvist K.G. A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation. Immunology. 2013;140:441-455.
  • [32] Stefanidakis M., Newton G., Lee W.Y., Parkos C.A., Luscinskas F.W. Endothelial CD47 interaction with SIRPgamma is required for human T-cell transendothelial migration under shear flow conditions . Blood. 2008;112:1280-1289. in vitro
  • [33] Piccio L., Vermi W., Boles K.S. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood. 2005;105:2421-2427.
  • [34] Durand J., Gauttier V., Morello A., Pengam S., Vanhove B., Poirier N. SIRPa inhibition monotherapy leads to dramatic change in solid tumor microenvironment and prevents metastasis development. Cancer Res. 2018;78:1753. 13 Suppl
  • [35] Gauttier V., Pengam S., Durand J. Selective SIRPa blockade potentiates dendritic cell antigen cross-presentation and triggers memory T-cell antitumor responses. Cancer Res. 2018;78:1684.
  • [36] Liu Q., Wen W., Tang L. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology. 2016;5:e1183850.
  • [37] Yanagita T., Murata Y., Tanaka D. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140.
  • [38] Ring N.G., Herndler-Brandstetter D., Weiskopf K. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA. 2017;114:E10578-E10585.
  • [39] Murata Y., Saito Y., Kotani T., Matozaki T. CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci. 2018;109:2349-2357.
  • [40] Okazawa H., Motegi S., Ohyama N. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol. 2005;174:2004-2011.
  • [41] Oldenborg P.A., Gresham H.D., Chen Y., Izui S., Lindberg F.P. Lethal autoimmune hemolytic anemia in CD47-deficient nonobese diabetic (NOD) mice. Blood. 2002;99:3500-3504.