JLE

Hépato-Gastro & Oncologie Digestive

MENU

Implication de la voie JAK-STAT dans la pathogénie des maladies inflammatoires chroniques de l’intestin Volume 26, numéro 9, Novembre 2019

  • [1] Abraham C., Cho J.H. Inflammatory bowel disease. N Engl J Med. 2009;361:2066-2078.
  • [2] Weber B., Saurer L., Mueller C. Intestinal macrophages: Differentiation and involvement in intestinal immunopathologies. Semin Immunopathol. 2009;31:171-184.
  • [3] Steel A.W., Mela C.M., Lindsay J.O. Increased proportion of CD16(+) NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Aliment Pharmacol Ther. 2011;33:115-126.
  • [4] Hart A.L., Al-Hassi H.O., Rigby R.J. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129:50-65.
  • [5] Jatiani S.S., Baker S.J., Silverman L.R. JAK/STAT pathways in cytokine signaling and myeloproliferative disorders: Approaches for targeted therapies. Genes Cancer. 2010;10:979-993.
  • [6] Matsuda T., Feng J., Witthuhn B.A. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun. 2004;325:586-594.
  • [7] Banerjee S, Biehl A, Gadina M, et al. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs 2017 ; 77 : 521-546.
  • [8] Igaz P., Toth S., Falus A. Biological and clinical significance of the JAK-STAT pathway; Lessons from knockout mice. Inflamm Res. 2001;50:435-441.
  • [9] Ivashkiv L.B., Hu X. Signaling by STATs. Arthritis Res Ther. 2004;6:159-168.
  • [10] Kiu H., Nicholson S.E. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88-106.
  • [11] Rodig S.J., Meraz M.A., White J.M. Disruption of the Jak1 genes demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93:373-383.
  • [12] Russell S.M., Tayebi N., Nakajima H. Mutation of Jak3 in a patient with SCID: Essential role of Jak3 in lymphoid development. Science. 1995;270:797-800.
  • [13] Franke A., McGovern D.P., Barrett J.C. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010;42:1118-1125.
  • [14] Anderson C.A., Boucher G., Lees C.W. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246-252.
  • [15] Jostins L., Ripke S., Weersma R.K. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119-124.
  • [16] Sakaguchi S., Sakaguchi N., Asano M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151-1164.
  • [17] Fuss I.J., Neurath M., Boirivant M. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261-1270.
  • [18] Fuss I.J., Heller F., Boirivant M. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490-1497.
  • [19] Korn T., Bettelli E., Oukka M. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485-517.
  • [20] Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: New immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut 2009 ; 58 : 1152-67.
  • [21] Beltran C.J., Nunez L.E., Diaz-Jimenez D. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1097-1107.
  • [22] Spencer D.M., Veldman G.M., Banerjee S. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology. 2002;122:94-105.
  • [23] Desreumaux P., Brandt E., Gambiez L. Distinct cytokine patterns in early and chronic ileal lesions of Crohn's disease. Gastroenterology. 1997;113:118-126.
  • [24] Fujino S., Andoh A., Bamba S. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65-70.
  • [25] Hueber W., Sands B.E., Lewitzky S. Secukinumab in Crohn's Disease Study Group. Secukinumab, a human anti-IL17a monoclonal antibody, for moderate to severe Crohn's disease : unexpected results of a randomized, double-blind placebo con- trolled trial. Gut. 2012;61:1693-1700.
  • [26] Colombel J.F., Sendid B., Jouhalt T. Secukinumab failure in Crohn's disease: The yeast connection. Gut. 2013;62:800-801. 5
  • [27] Seiderer J., Elben I., Diegelmann J. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD) : upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis. 2008;14:437-445.
  • [28] Sugimoto K. Role of STAT3 in inflammatory bowel disease. World J Gastroenterol. 2008;14:5110-5114.
  • [29] Li Y, de HC, Peppelenbosch MP, et al. New insights into the role of STAT3 in IBD. Inflamm Bowel Dis 2012 ; 18 : 1177-83.
  • [30] Musso A., Dentelli P., Carlino A. Signal transducers and activators of transcription 3 signaling pathway : an essential mediator of inflammatory bowel disease and other forms of intestinal inflammation. Inflamm Bowel Dis. 2005;11:91-98.
  • [31] Lovato P., Brender C., Agnholt J. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease. J Biol Chem. 2003;278:16777-16781.
  • [32] Suzuki A., Hanada T., Mitsuyama K. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001;193:471-481.
  • [33] Takeda K., Kaisho T., Yoshida N. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: Generation and characterization of T cell-specific Stat3-deficient mice. J Immunol. 1998;161:4652-4660.
  • [34] Atreya R., Mudter J., Finotto S. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation : evidence in Crohn disease and experimental colitis in vivo. Nat Med. 2000;6:583-588.
  • [35] Bollrath J., Phesse T.J., von Burstin V.A. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91-102.
  • [36] Alonzi T., Newton I.P., Bryce P.J. Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine. 2004;26:45-56.
  • [37] Goldsmith J.R., Uronis J.M., Jobin C. Mu opioid signaling protects against acute murine intestinal injury in a manner involving Stat3 signaling. Am J Pathol. 2011;179:673-683.
  • [38] Tao F., Qian C., Guo W. Inhibition of Th1/Th17 responses via suppression of STAT1 and STAT3 activation contributes to the amelioration of murine experimental colitis by a natural flavonoid glucoside icariin. Biochem Pharmacol. 2013;85:798-807.
  • [39] Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut 2017 ; 66 : 199-209.
  • [40] Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med 2017 ; 376 : 1723-1736.
  • [41] Sandborn W.J., Ghosh S., Panes J. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn's disease. Clin Gastroenterol Hepatol. 2014;12:1485-1493.
  • [42] Panes J., Sandborn W.J., Schreiber S. Tofacitinib for induction and maintenance therapy of Crohn's disease : Results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66:1049-1059.
  • [43] Sandborn W.J., Feagan B.G., Panes J. Safety and efficacy of ABT-494 (Upadacitinib), an oral Jak1 inhibitor, as induction therapy in patients with Crohn's disease: Results from Celest. Gastroenterology. 2017;152:S1308-S1309.