JLE

Hématologie

MENU

Mutations/délétions germinales de RUNX1 et prédisposition génétique aux hémopathies malignes Article à paraître

  • [1] Anderson R.C. Familial leukemia; a report of leukemia in five siblings, with a brief review of the genetic aspects of this disease. AMA Am J Dis Child. 1951;81:313-322.
  • [2] Arber D.A., Orazi A., Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405.
  • [3] Duployez N., Lejeune S., Renneville A. Myelodysplastic syndromes and acute leukemia with genetic predispositions: a new challenge for hematologists. Expert Rev Hematol. 2016;9:1189-1202.
  • [4] Luddy R.E., Champion L.A.A., Schwartz A.D. A fatal myeloproliferative syndrome in a family with thrombocytopenia and platelet dysfunction. Cancer. 1978;41:1959-1963.
  • [5] Dowton S.B., Beardsley D., Jamison D. Studies of a familial platelet disorder. Blood. 1985;65:557-563.
  • [6] Ho C.Y., Otterud B., Legare R.D. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1-22.2. Blood. 1996;87:5218-5224.
  • [7] Miyoshi H., Shimizu K., Kozu T. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A. 1991;88:10431-10434.
  • [8] Song W.-J., Sullivan M.G., Legare R.D. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166-175.
  • [9] Brown A.L., Arts P., Carmichael C.L. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020;4:1131-1144.
  • [10] Luo X., Feurstein S., Mohan S. ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv. 2019;3:2962-2979.
  • [11] Noetzli L., Lo R.W., Lee-Sherick A.B. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47:535-538.
  • [12] Pippucci T., Savoia A., Perrotta S. Mutations in the 5′ UTR of ANKRD26, the Ankirin Repeat Domain 26 Gene, Cause an Autosomal-Dominant Form of Inherited Thrombocytopenia, THC2. Am J Hum Genet. 2011;88:115-120.
  • [13] Speck N.A., Gilliland D.G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev Cancer. 2002;2:502-513.
  • [14] Wang Q., Stacy T., Binder M. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A. 1996;93:3444-3449.
  • [15] Ichikawa M., Asai T., Saito T. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299-304.
  • [16] Putz G., Rosner A., Nuesslein I. AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene. 2006;25:929-939.
  • [17] Growney J.D., Shigematsu H., Li Z. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood. 2005;106:494-504.
  • [18] Challen G.A., Goodell M.A. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol. 2010;38:403-416.
  • [19] Huang G., Shigesada K., Ito K. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin–proteasome-mediated degradation. EMBO J. 2001;20:723-733.
  • [20] Hohaus S., Petrovick M.S., Voso M.T. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol. 1995;15:5830-5845.
  • [21] Nuchprayoon I., Meyers S., Scott L.M. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol. 1994;14:5558-5568.
  • [22] Uchida H., Zhang J., Nimer S.D. AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol. 1997;158:2251-2258.
  • [23] Zhang D.E., Fujioka K., Hetherington C.J. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol. 1994;14:8085-8095.
  • [24] Bruhn L., Munnerlyn A., Grosschedl R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev. 1997;11:640-653.
  • [25] Hernandez-Munain C., Krangel M.S. Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol. 1994;14:473-483.
  • [26] Gilles L., Guièze R., Bluteau D. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood. 2008;111:4081-4091.
  • [27] Glembotsky A.C., Bluteau D., Espasandin Y.R. Mechanisms underlying platelet function defect in a pedigree with familial platelet disorder with a predisposition to acute myelogenous leukemia: potential role for candidate RUNX1 targets. J Thromb Haemost. 2014;12:761-772.
  • [28] Lordier L., Bluteau D., Jalil A. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun. 2012;3:1-10.
  • [29] Lichtinger M., Ingram R., Hannah R. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J. 2012;31:4318-4333.
  • [30] Oakford P.C., James S.R., Qadi A. Transcriptional and epigenetic regulation of the GM-CSF promoter by RUNX1. Leukemia Res. 2010;34:1203-1213.
  • [31] Brettingham-Moore K.H., Taberlay P.C., Holloway A.F. Interplay between transcription factors and the epigenome: insight from the role of RUNX1 in leukemia. Front Immunol. 2015;6:499.
  • [32] Duployez N., Fenwarth L. Controversies about germline missense variants. Leukemia Lymph. 2020;61:497-499. RUNX1
  • [33] De Rocco D., Melazzini F., Marconi C. Mutations of RUNX1 in families with inherited thrombocytopenia. Am J Hematol. 2017;92:E86-E88.
  • [34] Buijs A., Poot M., van der Crabben S. Elucidation of a novel pathogenomic mechanism using genome-wide long mate-pair sequencing of a congenital t(16;21) in a series of three RUNX1-mutated FPD/AML pedigrees. Leukemia. 2012;26:2151-2154.
  • [35] Jongmans M.C.J., Kuiper R.P., Carmichael C.L. Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia. 2009;24:242-246.
  • [36] Duployez N., Martin J.-E., Khalife-Hachem S. Germline RUNX1 intragenic deletion: implications for accurate diagnosis of FPD/AML. Hemasphere. 2019;3:e203.
  • [37] Fenwarth L., Duployez N., Marceau-Renaut A. Germline pathogenic variants in transcription factors predisposing to pediatric acute myeloid leukemia: results from the French ELAM02 trial. Haematologica. 2021;106. 10.3324/haematol.2020.248872 3
  • [38] Rio-Machin A., Vulliamy T., Hug N. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11:1-12.
  • [39] Michaud J., Wu F., Osato M. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood. 2002;99:1364-1372.
  • [40] Fournier E., Debord C., Soenen V. Baseline dysmegakaryopoiesis in inherited thrombocytopenia/platelet disorder with predisposition to haematological malignancies. Br J Haematol. 2020;189:e119-e122.
  • [41] Schmit J.M., Turner D.J., Hromas R.A. Two novel RUNX1 mutations in a patient with congenital thrombocytopenia that evolved into a high grade myelodysplastic syndrome. Leuk Res Rep. 2015;4:24-27.
  • [42] Antony-Debré I., Duployez N., Bucci M. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia. 2016;30:999-1002.
  • [43] Gaidzik V.I., Teleanu V., Papaemmanuil E. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016;30:2160-2168.
  • [44] Itzykson R., Kosmider O., Renneville A. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428-2436.
  • [45] Bejar R., Stevenson K., Abdel-Wahab O. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496-2506.
  • [46] Latger-Cannard V., Philippe C., Bouquet A. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis. 2016;11:49.
  • [47] Sorrell A., Espenschied C., Wang W. Hereditary leukemia due to rare RUNX1c splice variant (L472X) presents with eczematous phenotype. Int J Clin Med. 2012;3:607-613.
  • [48] Harden J.L., Krueger J.G., Bowcock A. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66-73.
  • [49] Béri-Dexheimer M., Latger-Cannard V., Philippe C. Clinical phenotype of germline RUNX1 haploinsufficiency: from point mutations to large genomic deletions. Eur J Hum Genet. 2008;16:1014-1018.
  • [50] Shinawi M., Erez A., Shardy D.L. Syndromic thrombocytopenia and predisposition to acute myelogenous leukemia caused by constitutional microdeletions on chromosome 21q. Blood. 2008;112:1042-1047.
  • [51] Glembotsky A.C., Oyarzún C.P.M., Luca G.D. First description of revertant mosaicism in familial platelet disorder with predisposition to acute myelogenous leukaemia: correlation with the clinical phenotype. Haematologica. 2020;105:e535. 10
  • [52] Gerrard J.M., Israels E.D., Bishop A.J. Inherited platelet-storage pool deficiency associated with a high incidence of acute myeloid leukaemia. Br J Haematol. 1991;79:246-255.
  • [53] Antony-Debré I., Manchev V.T., Balayn N. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood. 2015;125:930-940.
  • [54] Kanagal-Shamanna R., Loghavi S., DiNardo C.D. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica. 2017;102:1661-1670.
  • [55] Bluteau D., Glembotsky A.C., Raimbault A. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood. 2012;120:2708-2718.
  • [56] Nickels E.M., Soodalter J., Churpek J.E. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 2013;4:254-269.
  • [57] Owen C.J., Toze C.L., Koochin A. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood. 2008;112:4639-4645.
  • [58] Brown A.L., Hahn C.N., Scott H.S. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood. 2020;136:24-35.
  • [59] Prebet T., Carbuccia N., Raslova H. Concomitant germ-line RUNX1 and acquired ASXL1 mutations in a T-cell acute lymphoblastic leukemia. Eur J Haematol. 2013;91:277-279.
  • [60] Bluteau D., Gilles L., Hilpert M. Down-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia. Blood. 2011;118:6310-6320.
  • [61] Preudhomme C., Renneville A., Bourdon V. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood. 2009;113:5583-5587.
  • [62] Bellissimo D.C., Speck N.A. RUNX1 mutations in inherited and sporadic leukemia. Front Cell Dev Biol. 2017;5:111.
  • [63] Yoshimi A., Toya T., Kawazu M. Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat Commun. 2014;5:4770.
  • [64] Churpek J.E., Pyrtel K., Kanchi K.-L. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126:2484-2490.
  • [65] Preudhomme C., Warot-Loze D., Roumier C. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2AB gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood. 2000;96:2862-2869.
  • [66] Manchev V.T., Bouzid H., Antony-Debré I. Acquired TET2 mutation in one patient with familial platelet disorder with predisposition to AML led to the development of pre-leukaemic clone resulting in T2-ALL and AML-M0. J Cell Mol Med. 2017;21:1237-1242.
  • [67] Li Y., Qian M., Devidas M. Germline RUNX1 variation and predisposition to T-cell acute lymphoblastic leukemia in children. Blood. 2019;134:653-1653.
  • [68] Steensma D.P., Bejar R., Jaiswal S. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9-16.
  • [69] Duarte B.K.L., Yamaguti-Hayakawa G.G., Medina S.S. Longitudinal sequencing of RUNX1 familial platelet disorder: new insights into genetic mechanisms of transformation to myeloid malignancies. Br J Haematol. 2019;186:724-734.
  • [70] Hamilton K.V., Maese L., Marron J.M. Stopping leukemia in its tracks: should preemptive hematopoietic stem-cell transplantation be offered to patients at increased genetic risk for acute myeloid leukemia? J Clin Oncol. 2019;37:2098-2104.
  • [71] Churpek J.E., Lorenz R., Nedumgottil S. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia Lymph. 2013;54:28-35.