John Libbey Eurotext

Environnement, Risques & Santé

Méthodes haut-débit en toxicologie et en évaluation des risques sanitaires Volume 16, numéro 1, Janvier-Février 2017

  • [1] Inglese J., Auld D.S., Jadhav A. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci. 2006;103:11473-11478.
  • [2] Pelkonen O. Predictive toxicity: grand challenges. Front Pharmacol. 2010;1:3.
  • [3] Trevan J.W. The error of determination of toxicity. Proc R Soc B Biol Sci. 1927;101:483-514.
  • [4] Bhattacharya S., Zhang Q., Carmichael P.L. Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. Plos One. 2011;6:e20887.
  • [5] Shukla S.J., Huang R., Austin C.P. The future of toxicity testing: a focus on methods using a quantitative high-throughput screening platform. Drug Discov Today. 2010;15:997-1007. in vitro
  • [6] Zhu H., Zhang J., Kim M.T. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol. 2014;27:1643-1651.
  • [7] Hartung T. A Toxicology for the 21st century-Mapping the Road Ahead. Toxicol Sci. 2009;109:18-23.
  • [8] National Toxicology Program. A national toxicology program for the 21st century: a roadmap for the future. Washington, DC: NTP; 2004.
  • [9] Rangarajan A., Weinberg R.A. Opinion: comparative biology of mouse human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;3:952-959. versus
  • [10] Szymański P., Markowicz M., Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci. 2011;13:427-452.
  • [11] Zeise L., Bois F.Y., Chiu W.A. Addressing human variability in next-generation human health risk assessments of environmental chemicals. Environ Health Perspect. 2013;121:23-31.
  • [12] Rowan A.N. Alternatives: interaction between science and animal welfare. Product safety evaluation. New York: Mary Ann Liebert; 1983. 113-133
  • [13] Kitambi S.S., Chandrasekar G. Stem cells: a model for screening, discovery and development of drugs. Stem Cells Cloning Adv Appl. 2011;4:51-59.
  • [14] Cotgreave I.A. How can stem cell technologies be applied to replace animal use in toxicity testing? Toxicol Lett. 2011;205:S29.
  • [15] National Research Council (NRC). Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: National Academy Press; 2007.
  • [16] Krewski D., Andersen M.E., Mantus E. Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal. 2009;29:474-479.
  • [17] Bois F.Y. Physiologically-based modelling and prediction of drug interactions. Basic Clin Pharmacol Toxicol. 2009;106:154-161.
  • [18] Risk assessment in the federal government: managing the process. In: National Research Council (NRC), eds. Washington, D.C: National Academy Press; 1983191.
  • [19] European Food Safety Authority (EFSA), Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO). Towards a harmonised Total Diet Study approach: a guidance document. EFSA J. 2011;9:2450.
  • [20] Voet H., van der, Slob W. Integration of probabilistic exposure assessment and probabilistic hazard characterization. Risk Anal. 2007;27:351-371.
  • [21] Meek M.E.B., Boobis A.R., Crofton K.M. Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol. 2011;60. 2Supplement: S1-S14
  • [22] Pereira D.A., Williams J.A. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152:53-61.
  • [23] Fliri A.F., Loging W.T., Thadeio P.F. Biological spectra analysis: linking biological activity profiles to molecular structure. Proc Natl Acad Sci. 2005;102:261-266.
  • [24] Janzen W.P., Hodge C.N. A chemogenomic approach to discovering target-selective drugs. Chem Biol Drug Des. 2006;67:85-86.
  • [25] Smith S.C., Delaney J.S., Robinson M.P. Targeting chemical inputs and optimising HTS for agrochemical discovery. Comb Chem High Throughput Screen. 2005;8:577-587.
  • [26] Tietjen K., Drewes M., Stenzel K. High throughput screening in agrochemical research. Comb Chem High Throughput Screen. 2005;8:589-594.
  • [27] Omoe H. Recent trends in animal experimentation in Japan. On the revision and implementation of the law for the humane treatment and management of animals. Trends Q Rev. 2006;21:13-31.
  • [28] Seidle T., Stephens M.L. Bringing toxicology into the 21st century: a global call to action. Toxicol In Vitro. 2009;23:1576-1579.
  • [29] Pauwels M., Rogiers V. Safety evaluation of cosmetics in the EU. Toxicol Lett. 2004;151:7-17.
  • [30] Hartung T. From alternative methods to a new toxicology. Eur J Pharm Biopharm. 2011;77:338-349.
  • [31] Dix D.J., Houck K.A., Martin M.T. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci. 2007;95:5-12.
  • [32] Foth H., Hayes A. Background of REACH in EU regulations on evaluation of chemicals. Hum Exp Toxicol. 2008;27:443-461.
  • [33] Wilson M.P., Schwarzman M.R. Green chemistry: Wilson and Schwarzman respond. Environ Health Perspect. 2009;117:A386-A1386.
  • [34] van Vliet E. Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX. 2011;28:17-44.
  • [35] Bouvier d’Yvoire M., Prieto P., Blaauboer B.J. Physiologically-based kinetic modelling (PBK modelling): meeting the 3Rs agenda - the report and recommendations of ECVAM Workshop 63a. Altern Lab Anim. 2007;35:661-671.
  • [36] Environmental Protection Agency. ToxCastTM program: predicting hazard, characterizing toxicity pathways, and Prioritizing the Toxicity Testing of Environmental Chemicals. Washington, DC: EPA, 2007. https://www.epa.gov/chemical-research/toxicity-forecastingLa ToxCast
  • [37] Judson R., Houck K., Martin M. and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic Clin Pharmacol Toxicol. 2014;115:69-76. In vitro
  • [38] Andersen M.E., Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci. 2008;107:324-330.
  • [39] Houck K.A., Dix D.J., Judson R.S. Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. J Biomol Screen. 2009;14:1054-1066.
  • [40] Knight A.W., Little S., Houck K. Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. Regul Toxicol Pharmacol. 2009;55:188-199.
  • [41] Knudsen T.B., Houck K.A., Sipes N.S. Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets. Toxicology. 2011;282:1-15.
  • [42] Kavlock R.J., Ankley G., Blancato J. Computational toxicology – a state of the science mini review. Toxicol Sci. 2007;103:14-27.
  • [43] Raunio H. toxicology – non-testing methods. Front Pharmacol. 2011;2:1-8. In silico
  • [44] Carmichael N.G., Barton H.A., Boobis A.R. Agricultural chemical safety assessment: a multisector approach to the modernization of human safety requirements. Crit Rev Toxicol. 2006;36:1-7.
  • [45] Collins F.S., Gray G.M., Bucher J.R. Toxicology: transforming environmental health protection. Science. 2008;319:906-907.
  • [46] Feng B.Y., Simeonov A., Jadhav A. A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem. 2007;50:2385-2390.
  • [47] Liebsch M., Spielmann H. Currently available methods used in the regulatory toxicology. Toxicol Lett. 2002;127:127-134. in vitro
  • [48] Blaauboer B.J. The contribution of toxicity data in hazard and risk assessment: current limitations and future perspectives. Toxicol Lett. 2008;180:81-84. in vitro
  • [49] Wölcke J., Ullmann D. Miniaturized HTS technologies - uHTS. Drug Discov Today. 2001;6:637-646.
  • [50] Judson R.S., Kavlock R.J., Martin M. Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX. 2013;30:51-56.
  • [51] Boekelheide K., Andersen M.E. A mechanistic redefinition of adverse effects - a key step in the toxicity testing paradigm shift. ALTEX. 2010;27:243-252.
  • [52] Astashkina A., Mann B., Grainger D.W. A critical evaluation of cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther. 2012;134:82-106. in vitro
  • [53] Sever J.L. Application of a microtechnique to viral serological investigations. J Immunol. 1962;88:320-329.
  • [54] Inglese J., Johnson R.L., Simeonov A. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol. 2007;3:466-479.
  • [55] Mayr L.M., Fuerst P. The future of high-throughput screening. J Biomol Screen. 2008;13:443-448.
  • [56] Martis E.A., Radhakrishna R., Badve R.R. High-throughput screening: the hits and leads of drug discovery – an overview. J Appl Pharm Sci. 2011;1:2-10.
  • [57] Giddings S.J., Clarke S.E., Gibson G.G. CYP4A1 gene transfection studies and the peroxisome proliferator-activated receptor: development of a high-throughput assay to detect peroxisome proliferators. Eur J Drug Metab Pharmacokinet. 1997;22:315-319.
  • [58] Chin J., Adams A.D., Bouffard A. Miniaturization of cell-based beta-lactamase-dependent FRET assays to ultra-high throughput formats to identify agonists of human liver X receptors. Assay Drug Dev Technol. 2003;1:777-787.
  • [59] Tiffany-Castiglioni E., Ehrich M., Dees L. Bridging the gap between and models for neurotoxicology. Toxicol Sci. 1999;51:178-183. in vitroin vivo
  • [60] Guillouzo A. Liver cell models in toxicology. Environ Health Perspect. 1998;106:511-532. in vitro
  • [61] Pfaller W., Gstraunthaler G. Nephrotoxicity testing – what we know and what we need to know. Environ Health Perspect. 1998;106:559-569. in vitro
  • [62] Griffith L.G., Swartz M.A. Capturing complex 3D tissue physiology . Nat Rev Mol Cell Biol. 2006;7:211-224. in vitro
  • [63] Stevens M.M. Toxicology: testing in the third dimension. Nat Nanotechnol. 2009;4:342-343.
  • [64] Mazzoleni G., Di Lorenzo D., Steimberg N. Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr. 2009;4:13-22.
  • [65] Pampaloni F., Stelzer E.H.K., Masotti A. Three-dimensional tissue models for drug discovery and toxicology. Recent Pat Biotechnol. 2009;3:103-117.
  • [66] Bongso A., Fong C.Y., Ng S.C. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9:2110-2117.
  • [67] Pittenger M.F. Mesenchymal stem cells from adult bone marrow. Methods Mol Biol. 2008;449:27-44.
  • [68] Fernandes T.G., Diogo M.M., Clark D.S. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 2009;27:342-349.
  • [69] Gaudio E., Carpino G., Cardinale V. New insights into liver stem cells. Dig Liver Dis. 2009;41:455-462.
  • [70] Moon Y.J., Lee M.W., Yoon H.H. Hepatic differentiation of cord blood-derived multipotent progenitor cells (MPCs) . Cell Biol Int. 2008;32:1293-1301. in vitro
  • [71] Clarke D.L., Johansson C.B., Wilbertz J. Generalized potential of adult neural stem cells. Science. 2000;288:1660-1663.
  • [72] O’Malley J., Woltjen K., Kaji K. New strategies to generate induced pluripotent stem cells. Curr Opin Biotechnol. 2009;20:516-521.
  • [73] Menasché P. Stem cell therapy for chronic heart failure: lessons from a 15-year experience. C R Biol. 2011;334:489-496.
  • [74] Fox S. High-throughput screening: searching for higher productivity. J Biomol Screen. 2004;9:354-358.
  • [75] Raldúa D., Piña B. zebrafish assays for analyzing drug toxicity. Expert Opin Drug Metab Toxicol. 2014;10:685-697. In vivo
  • [76] MacRae C.A., Peterson R.T. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14:721-731.
  • [77] Boyd W.A., McBride S.J., Rice J.R. A high-throughput method for assessing chemical toxicity using a reproduction assay. Toxicol Appl Pharmacol. 2010;245:153-159. Caenorhabditis elegans
  • [78] Cohen Hubal E.A., Richard A.M., Shah I. Exposure science and the U.S. EPA National Center for Computational Toxicology. J Expo Sci Environ Epidemiol. 2010;20:231-236.
  • [79] Collins F.S., Gray G.M., Bucher J.R. Toxicology: transforming environmental health protection. Science. 2008;319:906-907.
  • [80] Leach A.R. Molecular modelling: principles and applications. Harlow: Pearson/Prentice Hall; 2001. 2nd ed.744
  • [81] Mombelli E., Ringeissen S. The computational prediction of toxicological effects in regulatory contexts. Current use and future potential of (Q)SAR tools. Actual Chim. 2009;335:52-59.
  • [82] Roy K., Kar S., Das R.N. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. London: Academic Press; 2015.
  • [83] Zhang L., Sedykh A., Tripathi A. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol Appl Pharmacol. 2013;272:67-76.
  • [84] Gramatica P., Papa E. Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure. Environ Sci Technol. 2007;41:2833-2839.
  • [85] Wedebye E.B., Dybdahl M., Nikolov N.G. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project. Reprod Toxicol. 2015;55:64-72.
  • [86] Demchuk E., Ruiz P., Chou S. SAR/QSAR methods in public health practice. Toxicol Appl Pharmacol. 2011;254:192-197.
  • [87] Peyret T., Krishnan K. QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ Res. 2011;22:129-169.
  • [88] Exposure science in the 21st century: a vision and a strategy. In: National Research Council, eds. Washington, D.C: National Academies Press; 2012. 195
  • [89] European Commission. Commission Regulation (EC) No 1488/94 of 28 June 1994 laying down the principles for the assessment of risks to man and the environment of existing substances in accordance with Council Regulation (EEC) No 793/93. Brussels: Official Journal of the European Communities; 1994.
  • [90] Lyons M.A., Yang R.S.H., Mayeno A.N. Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ Health Perspect. 2008;116:1040-1046.
  • [91] Crépet A., Denys S., Hulin M. Exposition agrégée, combinée, cumulée à des substances chimiques et risques associés. Environ Risque Sante. 2012;11:424-425.
  • [92] WHO. Assessment of combined exposures to multiple chemicals. Report of a WHO/IPCS International Workshop on Aggregate/Cumulative Risk Assessment. Geneva: World Health Organization; 2009.
  • [93] Meek M., Boobis A., Cote I. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol. 2014;34:1-18.
  • [94] Boobis A.R., Ossendorp B.C., Banasiak U. Cumulative risk assessment of pesticide residues in food. Toxicol Lett. 2008;180:137-150.
  • [95] Arnot J.A., Mackay D., Webster E. Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol. 2006;40:2316-2323.
  • [96] Rosenbaum R.K., Bachmann T.M., Gold L.S. USEtox - the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess. 2008;13:532-546.
  • [97] Wambaugh J.F., Setzer R.W., Reif D.M. High-throughput models for exposure-based chemical prioritization in the ExpoCast Project. Environ Sci Technol. 2013;47:8479-8488.
  • [98] Wambaugh J.F., Wang A., Dionisio K.L. High-throughput heuristics for prioritizing human exposure to environmental chemicals. Environ Sci Technol. 2014;48:12760-12767.
  • [99] Vin K., Papadopoulos A., Cubadda F. TDS exposure project: relevance of the total diet study approach for different groups of substances. Food Chem Toxicol. 2014;73:21-34.
  • [100] EFSA. Towards a harmonised Total Diet Study approach: a guidance document. Parma: European Food and Safety Authority; 2011.
  • [101] Crépet A., Tressou J., Graillot V. Identification of the main pesticide residue mixtures to which the French population is exposed. Environ Res. 2013;126:125-133.
  • [102] Crépet A., Héraud F., Béchaux C. The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to which the French population is exposed. Toxicology. 2013;313:83-93.
  • [103] van der Voet H., de Boer W.J., Kruisselbrink J.W. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides. Food Chem Toxicol. 2015;79:5-12.
  • [104] Albertini R., Bird M., Doerrer N. The use of biomonitoring data in exposure and human health risk assessments. Environ Health Perspect. 2006;114:1755-1762.
  • [105] van Leeuwen F.X., Feeley M., Schrenk D. Dioxins: WHO's tolerable daily intake (TDI) revisited. Chemosphere. 2000;40:1095-1101.
  • [106] Angerer J., Ewers U., Wilhelm M. Human biomonitoring: state of the art. Int J Hyg Environ Health. 2007;210:201-228.
  • [107] Choi J., Mørck T.A., Polcher A. European Food and Safety Authority supporting publications; 2015. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food
  • [108] World Health Organization. Characterization and application of physiologically based pharmacokinetic models in risk assessment. Geneva: World Health Organization; 2010.
  • [109] Wetmore B.A., Wambaugh J.F., Ferguson S.S. Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci. 2012;125:157-174.
  • [110] Wambaugh J.F., Wetmore B.A., Pearce R. Toxicokinetic triage for environmental chemicals. Toxicol Sci. 2015157-174..
  • [111] Bernillon P., Bois F.Y. Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect. 2000;108:883-893.
  • [112] Verner M.A., Ayotte P., Muckle G. A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiologic studies. Environ Health Perspect. 2009;117:481-487.
  • [113] Ulaszewska M.M., Ciffroy P., Tahraoui F. Interpreting PCB levels in breast milk using a physiologically based pharmacokinetic model to reconstruct the dynamic exposure of Italian women. J Expo Sci Environ Epidemiol. 2012;22:601-609.
  • [114] Wang Y.-H. Confidence assessment of the Simcyp time-based approach and a static mathematical model in predicting clinical drug-drug interactions for mechanism-based CYP3A inhibitors. Drug Metab Dispos. 2010;38:1094-1104.
  • [115] Wetmore B.A., Wambaugh J.F., Ferguson S.S. The relative impact of incorporating pharmacokinetics on predicting hazard and mode of action from high-throughput toxicity assays. Toxicol Sci. 2013;132:327-346. in vivoin vitro
  • [116] Hoover S.M., Zeise L., Pease W.S. Improving the regulation of carcinogens by expediting cancer potency estimation. Risk Anal. 1995;15:267-280.
  • [117] Shin H.-M., Ernstoff A., Arnot J.A. Risk-based high-throughput chemical screening and prioritization using exposure models and bioactivity assays. Environ Sci Technol. 2015;49:6760-6771. in vitro
  • [118] Phillips M.B., Leonard J.A., Grulke C.M. A workflow to investigate exposure and pharmacokinetic influences on high-throughput chemical screening based on adverse outcome pathways. Environ Health Perspect. 2015;124:53-60. in vitro
  • [119] Bois F., Quignot N. Physiologically based toxicokinetic models for prediction of complex metabolic interactions between chemical in mixtures. Toxicol Lett. 2014;229:S18-S19.
  • [120] Amzal B., Quignot N., Dorne J.-L. New tools for evidence-based risk assessment of chemical mixtures. Toxicol Lett. 2014;229:S19.
  • [121] Bois F.Y. Physiological modeling of metabolic interactions. Environ Risque Sante. 2009;8:413-424.
  • [122] Bois F.Y., Jamei M., Clewell H.J. PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology. 2010;278:256-267.
  • [123] Houck K.A., Kavlock R.J. Understanding mechanisms of toxicity: insights from drug discovery research. Toxicol Appl Pharmacol. 2008;227:163-178.
  • [124] Glick M., Jenkins J.L., Nettles J.H. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. J Chem Inf Model. 2006;46:193-200.
  • [125] Kenakin T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discov. 2003;2:429-438.
  • [126] Judson R.S., Houck K.A., Kavlock R.J. screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect. 2010;118:485-492. In vitro
  • [127] Edwards S.W., Preston R.J. Systems biology and mode of action based risk assessment. Toxicol Sci. 2008;106:312-318.
  • [128] Carere A., Stammati A., Zucco F. toxicology methods: impact on regulation from technical and scientific advancements. Toxicol Lett. 2002;127:153-160. In vitro
  • [129] Holzhütter H.-G., Drasdo D., Preusser T. The virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip Rev Syst Biol Med. 2012;4:221-235.
  • [130] Quignot N., Hamon J., Bois F.Y. Extrapolating results to predict human toxicity. In: Bal-Price A., Jennings P., eds. toxicology systems. Methods in pharmacology and toxicology. New-York: Springer Science; 2014531-550. in vitroIn vitro
  • [131] Hamon J., Renner M., Jamei M. Quantitative to extrapolation of tissues toxicity. Toxicol In Vitro. 2015;30:203-216. in vitroin vivo1
  • [132] Yoon M., Campbell J.L., Andersen M.E. Quantitative to extrapolation of cell-based toxicity assay results. Crit Rev Toxicol. 2012;42:633-652. in vitroin vivo
  • [133] Barton H.A., Chiu W.A., Setzer W. Characterizing uncertainty and variability in physiologically-based pharmacokinetic (PBPK) models: state of the science and needs for research and implementation. Toxicol Sci. 2007;99:395-402.
  • [134] Loizou G., Spendiff M., Barton H.A. Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regul Toxicol Pharmacol. 2008;50:400-411.
  • [135] European Food Safety Authority (EFSA). Guidance of the Scientific Committee on a request from EFSA related to uncertainties in dietary exposure assessment. EFSA J. 2006;438:1-54.
  • [136] Hartung T., Daston G. Are tests suitable for regulatory use? Toxicol Sci. 2009;111:233-237. in vitro
  • [137] Basketter D.A., Clewell H., Kimber I. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing - t4 report*. ALTEX. 2012;29:3-91.