JLE

Epileptic Disorders

MENU

The control of seizures by the basal ganglia? A review of experimental data Volume 4, supplément 3, Supplement 3, December 2002

1. Buzsaki G, Smith A, Berger S, et al. Petit mal epilepsy and parkinsonian termor: hypothesis of a common pacemaker. Neuroscience 1990; 36: 1-14.

2. Faeth W, Walker A, Andy O. The propagation of cortical and subcortical epileptic discharge. Epilepsia 1954; 3: 37-48.

3. Udvarhelyi G, Walker A. Dissemination of acute focal seizures in the monkey. I. From cortical foci. Arch Neurol 1965; 12: 333-56.

4. Heath R. Brain function in epilepsy: midbrain, medullary, and cerebrellar interaction with the rostral forebrain. J Neurol Neurosurg Psychiat 1976; 39: 1037-51.

5. Neafsey E, Chuman C, Ward A. Propagation of focal cortical epileptiform discharge to the basal ganglia. Exp Neurol 1979; 66: 97-108.

6. McCulloch WS. Mechanisms for spread of epileptic activation of brain. Electroenceph Clin Neurophysiol 1949; 1: 19-24.

7. Heuser G, Buchwald NA, Wyers EF. ÒCaudate spindleÓ: II. Facilitatory and inhibitory caudate-cortical pathways. Electroenceph Clin Neurophysiol 1961; 13: 519-33.

8. Vergnes M, Marescaux C, Depaulis A. Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non convulsive epilepsy. Brain Res 1990; 523: 87-91.

9. Danober L, Deransart C, Depaulis A, et al. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55: 27-57.

10. Sokoloff L, Reivich M, Kennedy C, et al. The 14C-deoxyglucose method for measurement of local cerebral glucose utilization: theory, procedure and normal values in conscious and anesthetized albino rats. J Neurochem 1977; 28: 897-916.

11. Engel J, Wolfson L, Brown L. Anatomical correlates of electrical and behavioral events related to amygdaloid kindling. Ann Neurol 1978; 3: 538-44.

12. Ben Ari Y, Tremblay E, Riche D, et al. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 1981; 6: 1361-91.

13. Pazdernik TL, Cross RS, Giesler M, et al. Changes in local cerebral glucose utilization induced by convulsants. Neurosci 1985; 14: 823-35.

14. Fernandes MJ, Dube C, Boyet S, et al. Correlation between hypermetabolism and neuronal damage during status epilepticus induced by lithium and pilocarpine in immature and adult rats. J Cereb Blood Flow Metabol 1999; 19: 195-209.

15. White L, Price J. The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and Fos immunocytochemistry. J Neurosci 1993; 13: 4787-809.

16. McIntyre D, Don J, Edson N. Distribution of (14C)2-deoxygluycose after various forms and duration of status epilepticus induced by stimulation of a kindled amygdala focus in rats. Epilepsy Res 1991; 10: 119-33.

17. Dragunow M, Robertson HA. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 1987; 329: 441-2.

18. Saffen DW, Cole AJ, Worley PF, et al. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci USA 1988; 85: 7795-9.

19. Morgan JI, Cohen DR, Hempstead JL, et al. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987; 237: 192-7.

20. Clark M, Post M, Weiss S, et al. Regional expression of c-fos mRNA in rat brain during the evolution of amygdala kindled seizures. Mol Brain Res 1991; 11: 55-64.

21. André V, Pineau N, Motte JE, et al. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur J Neurosci 1998; 10: 2094-106.

22. Labiner D, Butler L, Cao Z, et al. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 1993; 13: 744-51.

23. Applegate CD, Pretel S, Piekut DT. The substantia nigra pars reticulata, seizures and Fos expression. Epilepsy Res 1995; 20: 31-9.

24. Moshe SL, Sperber EF. Substantia nigra-mediated control of generalized seizures. In: Avoli M, Gloor P, Kostopoulos GK, Naquet R. Generalized Epilepsy, Neurobiologic Approaches. Boston: Birkhauser, 1990: 355-67.

25. Kreindler A, Zukermann E, Steriade M, et al. Electroclinical features of convulsions induced by stimulation of brainstem. J Neurophysiol 1958; 21: 430.

26. Gibbs F, Gibbs E. The convulsive threshold of various parts of the cat's brain. Arch Neurol Psychiat 1936; 35: 109.

27. Goddard GV. Development of epilepticseizures through brain stimulation at low intensity. Nature 1967; 214: 1020-1.

28. Smith I, Beninger R. Contralateral turning caused by metabotropicglutamate receotor stimulation in the dorsal striatum is reversed by MCPG, TTX and cis-flupenthixol. Behav Neurosci 1996a; 110: 282-9.

29. Smith ID, Todd MJ, Beninger RJ. Glutamate receptor agonist injections into the dorsal striatum cause contralateral turning in the rat: involvement of kainate and AMPA receptors. Eur J Pharmacol 1996b; 301: 7-17.

30. Kolasiewicz W, Cools A, Ossowska K, et al. The neostriatal inhibition of catalepsy, but not muscle rigidity, evoked from the substantia nigra pars reticulata. Pharmacol Biochem Behav 1987; 28: 453-7.

31. Turski L, Cavalheiro E, Turski W, et al. Anticonvulsant action of excitatory amino acid in the rat striatum. Epilepsia 1985; 26: 507-14.

32. Turski L, Klockgether T, Turski W, et al. Substantia nigra and motor control in the rat: effect of intranigral alpha-kainate and gamma-D-glutamylaminomethylsulphonate on mobility. Brain Res 1987; 424: 37-48.

33. Turski L, Cavalheiro EA, Calderazzo-Filho LS, et al. The basal ganglia, the deep prepyriform cortex, and seizure spread: bicuculline is anticonvulsant in the rat striatum. Proc Natl Acad Sci USA 1989; 86: 1694-7.

34. Deransart C, Riban V, Lê BT, et al. Dopamine in the striatum modulates seizures in a geneticmodel of absence epilepsy in the rat. Neuroscience 2000; 100, 335-44.

35. Boda B, Szente MB. Stimulation of the substantia nigra pars reticulata suppresses neocortical seizures. Brain Res 1992; 574: 237-43.

36. Maggio R, Liminga U, Gale K. Selective stimulation of kainate but not quisqualate or NMDA receptors in substantia nigra evokes limbicmotor seizures. Brain Res 1990; 528: 223-30.

37. Angyan L. substantia nigra stimulation and blood pressure effects of locally applied kainic acid. Neuroreport 1991; 2: 785-8.

38. Arnt I, Scheel-Kruger J. Intranigral GABA antagonists produce dopamine-independent biting in rats. Eur J Pharmacol 1980; 62: 51-61.

39. Gunne L, Bachuys S, Gale K. Oral movements induced by interference with nigral GABA neurotransmission: relationship to tardive dyskinesia. Exp Neurol 1988; 100: 459-69.

40. Maggio R, Sohn E, Gale K. Lack of proconvulsant action of GABA depletion in substantia nigra in several seizure models. Brain Res 1991; 547: 1-6.

41. Sawamura A, Hashizume K, Yoshida K, et al. Kainicac idinduced substantia nigra seizure in rats: behavior, EEG and metabolism. Brain Res 2001; 911: 89-95.

42. Vercueil L, Benazzouz A, Deransart C, et al. High-frequency stimulation of the sub-thalamic nucleus suppressed absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Res 1998; 31: 39-46.

43. Garant D, Gale K. Lesions of substantia nigra protect against experimentally induced seizures. Brain Res 1983; 273: 156-61.

44. Shin C, Silver J, Bonhaus D, et al. The role of the substantia nigra in the development of kindling: pharmacologic and lesion studies. Brain Res 1987; 412: 311-7.

45. Bonhaus DW, Walters JR, McNamara JO. Activation of substantia nigra neurons: role in the propagation of seizures in kindled rats. J Neurosci 1986; 6: 3024-30.

46. McNamara J, Bonhaus D, Crain B, et al. An approach to elucidating the network of brain structures underlying kindling. In: Wada J, ed. Kindling 3. New York: Raven Press, 1983: 125-38.

47. Wahnschaffe U, Lšscher W. Selective bilateral destruction of substantia nigra has no effect on kindled seizures induced from stimulation of amygdala or piriform cortex in rats. Neurosci Lett 1990; 113: 205-10.

48. Gale K, Iadarola MJ. Seizure protection and increased nerveterminal GABA: delayed effects of GABA transaminase inhibition. Science 1980; 208: 288-91.

49. Iadarola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 1982; 218: 1237-40.

50. Deransart C, Marescaux C, Depaulis A. Involvement of nigral glutamatergicinputs in the control of seizures in a geneticmodel of absence epilepsy in the rat. Neuroscience 1996; 71: 721-8.

51. Depaulis A, Vergnes M, Marescaux C. Endogenous control of epilepsy: the nigral inhibitory system. Prog Neurobiol 1994; 42: 33-52.

52. Velisek L, Veliskova J, Moshe SL. Electrical stimulation of substantia nigra pars reticulata is anticonvulsant in adult and young male rats. Exp Neurol 2002; 173: 145-52.

53. Deransart C, Lê-Pham BT, Hirsch E, et al. Inhibition of the substantia nigra suppresses absences and clonic seizures in audiogenic rats, but not tonic seizures: evidence for seizure specificity of the nigral control. Neuroscience 2001; 105: 203-11.

54. Depaulis A, Vergnes M, Liu Z, et al. Involvement of the nigral output pathways in the inhibitory control of the substantia nigra over generalized non-convulsive seizures in the rat. Neuroscience 1990; 39: 339-49.

55. Garant DS, Gale K. Substantia nigra-mediated anticonvulsant actions: role of nigral output pathways. Exp Neurol 1987; 97: 143-59.

56. Shehab S, Coffey P, Dean P, et al. Regional expression of fos-like immunoreactivity following seizures induced by pentylenetetrazole and maximal electroshock. Exp Neurol 1992; 118: 261-74.

57. Shehab S, Simkins M, Dean P, et al. The dorsal midbrain anticonvulsant zone - I. Effects of locally administered excitatory amino acids or bicuculline on maximal electroshock seizures. Neuroscience 1995; 65: 671-9.

58. Nail-Boucherie K, Lê-Pham BT, Marescaux C, et al. Suppression of absence-seizures by electrical and pharmacological activation of the caudal superior colliculus in a genetic model of absence epilepsy in the rat. Exp Neurol, 2002, in press.

59. Morari M, O'Connor WT, Ungerstedt U, et al. Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat - II. Evidence for striatal N-methyl-D-aspartate receptor regulation of striatonigral GABAergictransmission and motor function. Neuroscience 1996; 72: 89-97.

60. Akkal D, Burbaud P, Audin J, et al. Responses of substantia nigra pars reticulata neurons to intrastriatal D1 and D2 dopaminergicagonist injections in the rat. Neurosci Lett 1996; 213: 66-70.

61. Deniau JM, Menetrey A, Thierry AM. Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 1994; 61: 533-45.

62. Cavalheiro EA, Turski L. Intrastriatal N-methyl-D-aspartate prevents amygdala kindled seizures in rats. Brain Res 1986; 377: 173-6.

63. Turski L, Ikonomidou C, Turski WA, et al. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 1989; 3: 154-71.

64. Turski L, Meldrum BS, Cavalheiro EA, et al. Paradoxical anticonvulsant activity of the excitatory amino acid N-methyl-Daspartate in the rat caudate-putamen. Proc Natl Acad Sci USA 1987; 84: 1689-93.

65. Turski L, Cavalheiro EA, Bortolotto ZA, et al. Dopaminesensitive anticonvulsant site in the rat striatum. J Neurosci 1988; 8: 4027-37.

66. Benazzouz A, Piallat B, Pollak P, et al. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett 1995; 189: 77-80.

67. Féger J, Robledo P. The effects of activation or inhibition of the subthalamic nucleus on the metabolic and electrophysiological activities within the pallidal complex and the substantia nigra in the rat. Eur J Neurosci 1992; 3: 947-52.

68. Veliskova J, Velsek L, Moshe SL. Subthalamicnuc leus: a new anticonvulsant site in the brain. Neuroreport 1996; 7: 1786-8.

69. Deransart C, Lê BT, Marescaux C, et al. Role of the subthalamo- nigral input in the control of amygdala-kindled seizures in the rat. Brain Res 1998; 807: 78-83.

70. Dybdal D, Gale K. Postural and anticonvulsant effects of inhibition of the rat subthalamicnuc leus. J Neurosci 2000; 20: 6728-33.

71. Bressand K, Dematteis M, Kahane P, et al. Involvement of the subthalamic nucleus in the control of temporal lobe epilepsy: study by high frequency stimulation in rats (Abstract). Soc Neurosci 1999; 25: 1656.

72. Loddenkemper T, Pan A, Neme S, et al. Deep brain stimulation in epilepsy. J Clin Neurophysiol 2001; 18: 514-32.

73. Kelsey JE, Belluzzi JD. Endorphin mediation of post-ictal effects of kindled seizures in rats. Brain Res 1982; 253: 337-40.

74. McLachlan RS, Bihari F. Secondary generalization of seizures from a cortical penicillin focus following stimulation of the basal forebrain. Exp Neurol 1990; 109: 237-42.

75. Sato M, Onishi T, Nakashima T, et al. Experimental study on epilepsy using a Òkindling preparationÓ. Correlation between septal seizure development and psychomotor seizure. No To Shinkei 1976; 28: 667-79.

76. Zhang X, Le Gal La Salle G, Ridoux V, et al. Prevention of kainic acid-induced limbic seizures and Fos expression by the GABA-A receptor agonist muscimol. Eur J Neurosci 1997; 9: 29-40.

77. Deransart C, Riban V, Lê BT, et al. Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat. Neurosci Letters 1999; 265: 131-4.

78. Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250: 1429-32.

79. Le Moine C, Normand E, Guitteny AF, et al. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 1990; 87: 230-4.

80. Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson's disease. Synapse 1995; 19: 264-93.

81. Yang CR, Mogenson GJ. Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 1989; 489: 237-46.

82. Al-Tajir G, Starr MS. D-2 agonists protect rodents against pilocarpine-induced convulsions by stimulating D-2 receptors in the striatum, but not in the substantia nigra. Pharmacol Biochem Behav 1991a; 39: 109-13.

83. Al-Tajir G, Starr MS. Anticonvulsant effect of striatal dopamine D2 receptor stimulation: dependence on cortical circuits? Neuroscience 1991b; 43: 51-7.

84. Csernansky JG, Mellentin J, Beauclair L, et al. Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala. Biol Psychiatry 1988; 23: 285-94.

85. Wahnschaffe U, Lšscher W. Anticonvulsant effects of ipsilateral but not contralateral microinjections of the dopamine D2 agonist LY 171555 into the nucleus accumbens of amygdalakindled rats. Brain Res 1991; 553: 181-7.

86. Warter JM, Vergnes M, Depaulis A, et al. Effects of drugs affecting dopaminergic neurotransmission in rats with spontaneous petit mal-like seizures. Neuropharmacology 1988; 27: 269-74.

87. Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22: 159-94.

88. Deransart C, Marescaux C, Depaulis A. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 1998, 32: 213-23.

89. Bonhaus DW, Russell RD, McNamara JO. Activation of substantia nigra pars reticulata neurons: role in the initiation and behavioral expression of kindled seizures. Brain Res 1991; 545: 41-8.

90. Kaniff TE, Chuman CM, Neafsey EJ. Substantia nigra single unit activity during penicillin-induced focal cortical epileptiform discharge in the rat. Brain Res Bull 1983; 11: 11-3.

91. Rektor I, Bares M, Kubova D. Movement-related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol 2001; 112: 2146-53.

92. Spiegel EA, Wycis HAT, Baird III HW, et al. Functional state of basal ganglia in extrapyramidal and convulsive disorders. Arch Neurol Psychiat 1956; 75: 167-74.

93. McNaughton BL, O'Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 1983; 8: 391-7.

94. Rebrik S, Tzonev S, Miller KD. Analysis of Tetrode Recordings in Cat Visual System. In: Bower JM, ed. Proceedings of CNS97 (Computation and Neural Systems Meeting, Big Sky Montana, July 1997). New York: Plenum Press, 1998.

95. Gulley JM, Kuwajima M, Mayhill E, et al. Behavior-related changes in the activity of substantia nigra pars reticulata neurons in freely moving rats. Brain Res 1999; 845: 68-76.

96. Rada P, Hernandez L. Opposite changes of dopamine turnover in prefrontal cortex and nucleus accumbens after amygdaloid kindling. Neurosci Lett 1990; 117: 144-8.

97. Gelbard HA, Applegate CD. Persistent increases in dopamine D2 receptor mRNA expression in basal ganglia following kindling. Epilepsy Res 1994; 17: 23-9.

98. AdamecRE. Amygdala kindling and anxiety in the rat. NeuroReport 1990; 1: 255-8.

99. Hannesson DK, Corcoran ME. The mnemonic effects of kindling. Neurosci Biobehav Rev 2000; 24: 725-51.

100. Helfer V, Deransart C, Marescaux C, et al. Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience 1996; 73: 971-8.

101. Becker A, Grecksch G, Brosz M. Antiepileptic drugs - their effects on kindled seizures and kindling-induced learning impairments. Pharmacol Biochem Behav 1995; 52: 453-9.

102. Deransart C, Landwehrmeyer GB, Feuerstein TJ, et al. Upregulation of D3 dopaminergic receptor mRNA in the core of the nucleus accumbens accompanies the development of seizures in a geneticmodel of absence-epilepsy in the rat. Mol Brain Res 2001; 94: 166-77.

103. Vergnes M, Marescaux C, Depaulis A, et al. Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Develop Brain Res 1986; 30: 85-7.