John Libbey Eurotext

Epileptic Disorders

The Educational Journal of the International League Against Epilepsy

Might the olfactory bulb be an origin of olfactory auras in focal epilepsy? Volume 18, numéro 4, December 2016

  • [Acharya et al., 1998] Acharya V., Acharya J., Luders H. Olfactory epileptic auras. Neurology. 1998;51:56-61.
  • [Ahmed et al., 2015] Ahmed M.A., Donaldson S., Akor F., Cahill D., Akilani R. Olfactory hallucination in childhood primary headaches: case series. Cephalgia. 2015;35:234-239.
  • [Alisch et al., 2014] Alisch R.S., Chopra P., Fox A.S. Differentially methylated plasticity genes in the amygdala of young primates are lilnked to anxious temperament, an at-risk phenotype for anxiety and depressive disorders. J Neurosci. 2014;34:15548-15556.
  • [Andy, 1967] Andy O.J. The amygdala and hippocampus in olfactory aura. Electroencephalogr Clin Neurophysiol. 1967;23:292.
  • [Arruda-Carvalho and Clem, 2014] Arruda-Carvalho M., Clem R.L. Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. J Neurosci. 2014;34:15601-15609.
  • [Arzimanoglou et al., 1999] Arzimanoglou A.A., Salefranque F., Goutières F., Aicardi J. Hemifacial spasm or subcortical epilepsy? Epileptic Disord. 1999;1:121-125. 2
  • [Attardo et al., 2015] Attardo A., Fitzgerald J.E., Schnitzer M.J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:593-596.
  • [Baden et al., 2016] Baden T., Berens, Franke K., Rosón M.R., Bethge M., Euler T. The functional diversity of retinal ganglion cells in the mouse. Nature. 2016;529:345-350.
  • [Bancaud, 1987] Bancaud J. Sémiologie Clinique des crises épileptiques d’origine temporale. Rev Neurol (Paris). 1987;143:392-400.
  • [Barbado et al., 2002] Barbado M.V., Brinon J.G., Weruaga E. Changes in immunoreactivity to calcium-binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp Neurol. 2002;177:133-150.
  • [Berg et al., 2010] Berg A.T., Berkovic S.F., Brodie M.J. Revised terminology and concepts for the organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51:676-685.
  • [Blümcke et al., 2015] Blümcke I., Sarnat H.B., Coras R. Surgical Neuropathology of Focal Epilepsies: Textbook and Atlas. Montrouge, France: John Libbey Eurotext; 2015.
  • [Boitard et al., 2015] Boitard C., Maroun M., Tantot F. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci. 2015;35:4092-4103.
  • [Chen et al., 2003] Chen C., Shih Y.H., Yen D.J. Olfactory auras in patients with temporal lobe epilepsy. Epilepsia. 2003;44:257-260.
  • [Chen et al., 2007] Chen C., Shih Y.H., Yen D.I. Olfactory auras in patients with temporal lobe epilepsy. Epilepsia. 2007;48:2361-2364.
  • [Coleman et al., 2011] Coleman E.R., Grosberg B.M., Robbins M.S. Olfactory hallucinations in primary headache disorders: case series and literature review. Cephalgia. 2011;31:1488-1489.
  • [Crosby et al., 1962] Crosby E.C., Humphrey T., Lauer E.W. Correlative Anatomy of the Nervous System. NY: MacMillan; 1962.
  • [Dall’Oglio et al., 2015] Dall’Oglio A., Dutra A.C., Moreira J.E., Rasia-Filho A.A. The human medial amygdala: structure, diversity and complexity of dendritic spines. J Anat. 2015;227:440-459. 4
  • [Daly, 1958] Daly D.D. Uncinate fits. Neurology. 1958;8:250-260.
  • [Desai et al., 2015] Desai M., Agadi J.B., Karthik N., Praveenkumar S., Netto A.B. Olfactory abnormalities in temporal lobe epilepsy. J Clin Neurosci. 2015;22:1614-1618.
  • [Dupont et al., 2015] Dupont S., Samson Y., Nguyen-Michel V.H. Are auras a reliable clinical indicator in medial temporal lobe epilepsy with hippocampal sclerosis? Eur J Neurol. 2015;22:1310-1316.
  • [Eelkman Rooda, 2015] Eelkman Rooda O. Cerebellar nuclei stimulation stops epileptic absence seizures in Cacna1atottering mouse mutants by overruling oscillatory activity in thalamic nuclei. 31st International Epilepsy Congress, Istanbul, Turkey, 5-9 September 2015 (Abstract p0461).
  • [Engert and Bornhoeffer, 1999] Engert F., Bornhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999;399:66-70.
  • [Feldmeyer et al., 2013] Feldmeyer D., Brecht M., Helmchen F. Barrel cortex function. Prog Neurobiol. 2013;103:3-27.
  • [Fleischer et al., 2009] Fleischer J., Breer H., Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci. 2009;3:9.
  • [Foit et al., 2016] Foit N.A., van Veltoven V., Schulz R. Lesional cerebellar epilepsy: a review of the evidence. J Neurol. 2016. 10.1007/s00415-016-8161-9 In press
  • [Fried et al., 1995] Fried I., Spencer D.D., Spencer S.S. The anatomy of epileptic auras: focal pathology and surgical outcome. J Neurosurg. 1995;83:60-66.
  • [Gall et al., 1987] Gall C.M., Hendry S.H., Seroogy K.B., Jones E.G., Haycock J.W. Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J Comp Neurol. 1987;266:307-318.
  • [Galvin et al., 2015] Galvin C., Lee F.S., Ninan I. Alteration of the centromedial amygdala glutamatergic synapses by the BDNF Val66Met Polymorphism. Neuropsychopharmacology. 2015;40:2269-2277.
  • [Golgi, 1875] Golgi C. Sulli fina struttura dei bulbi olfattorii. Riv sper freniat Reggio-Emilia. 1875;1:66-78.
  • [Hamasaki et al., 2014] Hamasaki T., Otsubo H., Uchikawa H., Yamada K., Kuratsu J.-I. Olfactory auras caused by a very focal isolated epileptic network in the amygdala. Epil Behav Case Reports. 2014;2:142-144.
  • [Hanai et al., 2010] Hanai S., Okazaki K., Fujikawa Y. Hemfacial seizures due to ganglioglioma of cerebellum. Brain Dev. 2010;32:499-501.
  • [Harvey et al., 1996] Harvey A.S., Jayakar P., Duchowny M. Hemifacial seizures and cerebellar ganglioglioma; an epilepsy syndrome of infancy with seizures of cerebellar origin. Ann Neurol. 1996;40:91-98.
  • [Hawkins and Doty, 2009] Hawkins C.H., Doty R.L. The Neurology of Olfaction. Cambridge, UK: Cambridge University Press; 2009.
  • [Hayashi, 1999] Hayashi Y. Metabotropic glutamate receptor: its ligands and function in the olfactory system. Nippon Yakurigaku Zasshi - Folia Pharmacologica Japonica. 1999;113:73-83. 2
  • [Henkin and Levy, 2001] Henkin R.I., Levy L.M. Lateralization of brain activation to imagination and smell of odors using functional magnetic resonance imaging (fMRI): left hemispheric localization of pleasant and right hemispheric localization of unpleasant odors. J Comput Assist Tomogr. 2001;25:493-514.
  • [Hinds and Hinds, 1976] Hinds J.W., Hinds P.L. Synapse formation in the mouse olfactory bulb. I. Quantitative studies. J Comp Neurol. 1976;169:15-40.
  • [Hong et al., 2012] Hong S.C., Holbrook E.H., Leopold D.A., Hummel T. Distorted olfactory perception: a systemic review. Acta Otrolaryngol. 2012;132:S27-31. 1
  • [Humphrey, 1940] Humphrey T. The development of the olfactory and the accessory olfactory formations in human embryos and fetuses. J Comp Neurol. 1940;73:431-468.
  • [Jackson, 1871] Jackson J.H. Subjective sensations of smell with epileptiform attacks. Lancet. 1871;1:376-377.
  • [Jackson and Stewart, 1899] Jackson J.H., Stewart P. Epileptic attacks with a warning of smell and the intellectual aura (dreamy state) in a patient who had symptoms pointing to gross organic disease of the right temporosphenoidal lobe. Brain. 1899;22:534-550.
  • [Jiang et al., 2015] Jiang Y., Pun R.Y.K., Peariso K., Holland K.D., Lian Q., Danzer S.C. Olfactory bulbectomy leads to the development of epilepsy in mice. PLoS One. 2015;10:e0138178.
  • [Juran et al., 2015] Juran S.A., Lundström J.N., Geigant M. Unilateral resection of the anterior medial temporal lobe impairs odor identification and valence perception. Front Psychol. 2015;6:2015.
  • [Kaba and Keverne, 1992] Kaba H., Keverne E.B. Analysis of synapatic events in the mouse accessory olfactory bulb with current source-density technique. Neuroscience. 1992;49:247-254.
  • [Kauer and Cinelli, 1993] Kauer J.S., Cinelli A.R. Are there structural and functional modules in the vertebrate olfactory bulb? Microsc Res Tech. 1993;24:157-167.
  • [Kim et al., 2011] Kim D.H., Phillips M.E., Chang A.Y., Patel H.K., Nguyen K.T., Willhite D.C. Lateral connectivity in the olfactory bulb is sparse and segregated. Front Neural Circuits. 2011;5:5.
  • [Kim et al., 2015] Kim D.H., Samarth P., Feng F., Paré D., Nair S.S. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct Funct. 2015;221:2163-2182. 4
  • [Kishi, 1987] Kishi K. Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J Comp Neurol. 1987;258:112-114.
  • [Kondoh et al., 2016] Kondoh K., Lu Z., Ye X., Olson D.P., Lowell B.B., Buck L.B. A specific area of olfactory cortex involved in stress hormone responses to predator odours. Nature. 2016;532:103-106.
  • [Kosaka et al., 1985] Kosaka T., Hataguchi Y., Hama K., Nagatsu I., Wu J.Y. Coexistence of immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence of gamma-aminobutyric acid (GABA) and dopamine. Brain Res. 1985;343:166-171.
  • [Kratskin and Belluzi, 2003] Kratskin IL, Belluzi O. Anatomy and neurochemistry of the olfactory bulb. In: Doty RL. Handbook of Olfaction and Gustation. NY: Marcel Dekker, 2003: 139-64.
  • [Kuhn et al., 2014] Kuhn M., Hoger N., Feige B., Blechert J., Normann C., Nissen C. Fear extinction as a model for synaptic plasticity in major depressive disorder. PLoS One. 2014;9:e115280. 12
  • [Kumar et al., 2012] Kumar G., Juhasz C., Sood S., Asano E. Olfactory hallucinations elicited by electrical stimulation via subdural electrodes: effects of direct stimulation of olfactory bulb and tract. Epilepsy Behav. 2012;24:264-268.
  • [Lascano et al., 2013] Lascano A.M., Lemkaddem A., Granziera C. Tracking the source of cerebellar epilepsy: hemifacial seizures associated with cerebellar cortical dysplasia. Epilepsy Res. 2013;105:245-249.
  • [Lennox and Cobb, 1933] Lennox W.G., Cobb S. Arch Neurol Psychiatry. 1933;30:374-387.
  • [Li and Rainnie, 2014] Li C., Rainnie D.G. Bidirectional regulation of synaptic plasticity in the basolateral amygdala induced by the D1-like family of dopamine receptors and group II metabotropic glutamate receptors. J Physiol. 2014;592:4329-4351. 19
  • [Liem et al., 2001] Liem K.F., Bemas W.E., Walker W.F. Jr., Grande L. Functional Anatomy of the Vertebrates: An Evolutionary Perspective. Belmont, California, USA: Thomas Learning Press; 2001. 3 edrd
  • [Lin, 2015] Lin K. Olfactory modulation of epileptic discharges in temporal lobe epilepsy. 31st International Epilepsy Congress, Istanbul, Turkey, 5-9 September 2015 (Abstract p0443).
  • [Lipsitt et al., 1963] Lipsitt L.P., Engen T., Kaye H. Developmental changes in the olfactory threshold of the neonate. Child Dev. 1963;34:371-376.
  • [Llik and Pazarli, 2015] Llik F., Pazarli A.C. Reflex epilepsy triggered by smell. Clin EEG Neurosci. 2015;46:263-265.
  • [Lois et al., 1996] Lois C., García-Verdugo J.M., Varez-Bullya A. Chain migration of neuronal precursors. Science. 1996;271:978-981.
  • [Marin, 2014] Marin S. Out with the old and in with new: synaptic mechanisms of extinction in the amygdala. Brain Res. 2014;1621:231-238.
  • [Marlier et al., 2007] Marlier L., Gaugler C., Astruc D., Messer J. La sensibilité olfactive du nouveau-né prématuré. Arch Pédiatr. 2007;14:45-53.
  • [McTavish et al., 2012] McTavish T.S., Migliore M., Shepherd G.M., Hines M.L. Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front Comput Neurosci. 2012;6:3.
  • [Mills, 1908] Mills C.K. The cerebral centers for taste and smell and the uncinate group of fits, based on the study of a case of a tumor of the temporal lobe with necropsy. JAMA. 1908;5:879-885.
  • [Moser et al., 1994] Moser M.B., Trommald M., Andersen P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA. 1994;91:12673-12675.
  • [Mouly and Sullivan, 2010] Mouly A-M, Sullivan R. Memory and plasticity in the olfactory system: from infancy to adulthood. In: Menini A, Boca Raton FL. The Neurobiology of Olfaction. CRC Press, 2010.
  • [Ohm et al., 1990] Ohm T.G., Müller H., Ulfig N., Braak E. Glutamic acid decarboxylase and parvalbumen-like immunoreactive structures in the olfactory bulb of the human adult. J Comp Neurol. 1990;291:1-8.
  • [Ohm et al., 1991] Ohm T.G., Müller H., Braak E. Calbindin-D-28k-like immunoreactive structures in the olfactory bulb and anterior olfactory nucleus of the human adult. Distribution and cell typology - partial complementarity with parvalbumin. Neuroscience. 1991;42:823-840.
  • [Ostrowsky et al., 2000] Ostrowsky K., Isnard J., Ryvlin P., Guenot M., Fischer C., Mauguière F. Functional mapping of the insular cortex: clinical implication in temporal lobe epilepsy. Epilepsia. 2000;41:681-686.
  • [Palmini and Gloor, 1992] Palmini A., Gloor P. The localizing value of auras in partial seizures. Neurology. 1992;42:801-807.
  • [Parent, 1996] Parent A. Carpenter's Human Neuroanatomy. Baltimore: Williams and Wilkins; 1996. 9 edth
  • [Paxinos and Mai, 2004] Paxinos G., Mai J.K. The Human Nervous System. Amsterdam, Boston: Elsevier Academic Press; 2004. 2 ednd
  • [Penfield and Jasper, 1954] Penfield W., Jasper H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown; 1954.
  • [Perven and So, 2015] Perven G., So N.K. Epileptic auras: phenomenology and neurophysiology. Epileptic Disord. 2015;17:349-362.
  • [Pomeroy et al., 1990] Pomeroy S.L., LaMantia A.-S., Purves D. Postnatal construction of neural circuitry in the mouse olfactory bulb. J Neurosci. 1990;10:1952-1966.
  • [Pyatkina, 1982] Pyatkina G.A. Development of the olfactory epithelium in man. Z Mikrosk Anat Forsch (Leipzig). 1982;96:361-372.
  • [Rakic, 2000] Rakic P. Radial unit hypothesis of neonatal expansion. Novartis Found Symp. 2000;228:30-42.
  • [Rayport et al., 2006] Rayport M., Sani S., Ferguson S.M. Olfactory gustatory responses evoked by electrical stimulation of amygdalar region in man are qualitatively modifiable by interview content: case report and review. Int Rev Neurobiol. 2006;76:35-42.
  • [Reese and Brightman, 1970] Reese TS, Brightman MW. Olfactory surface and central olfactory connections in some vertebrates. In: Wolstenholme GEW, Knight J. Taste and Smell in Vertebrates. London: J & A Churchill, 1970: 115-49.
  • [Robain et al., 1988] Robain O., Floquet C., Heldt N., Rozenberg F. Hemimegalencephaly: a clinicopathological study of four cases. Neuropathol Appl Neurobiol. 1988;14:125-135.
  • [Root et al., 2014] Root C.M., Denny C.A., Hen R., Axel R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature. 2014;515:269-273.
  • [Rousselot et al., 1994] Rousselot P., Lois C., Álvarez-Bullya A. Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J Comp Neurol. 1994;351:51-61.
  • [Ryan et al., 2015] Ryan T.J., Roy D.S., Pignatelli M., Arons A., Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348:1007-1013.
  • [Sanders et al., 2012] Sanders J., Cowansage K., Baumgartel K., Mayford M. Elimination of dendritic spines with long-term memory is specific in active circuits. J Neurosci. 2012;32:12570-12578.
  • [Sarnat, 1978] Sarnat H.B. Olfactory reflexes in the newborn infant. J Pediatr. 1978;92:624-626.
  • [Sarnat, 2013] Sarnat H.B. Clinical Neuropathology Practice Guide 5-2013: Markers of neuronal maturation. Clin Neuropathol. 2013;32:340-369.
  • [Sarnat, 2015] Sarnat H.B. Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tiss Res. 2015;359:279-294.
  • [Sarnat, 2017] Sarnat HB. Development of olfaction and taste in the fetus and neonate. In: Polin RA, Fox WW, Abman SH. Fetal and Neonatal Physiology. 5th ed. Philadelphia: Elsevier, 2017; 2: 1411-20.
  • [Sarnat and Born, 1999] Sarnat H.B., Born D.E. Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev. 1999;21:41-50.
  • [Sarnat and Flores-Sarnat, 2009] Sarnat H.B., Flores-Sarnat L. α-B-crystallin: a tissue marker of epileptic foci in paediatric resections. Can J Neurol Sci. 2009;36:566-574.
  • [Sarnat and Flores-Sarnat, 2017a] Sarnat H.B., Flores-Sarnat L. Olfactory development. I. Functional maturation from fetal perception to adult wine-tasting. J Child Neurol. 2017. In press
  • [Sarnat and Flores-Sarnat, 2017b] Sarnat H.B., Flores-Sarnat L. Olfactory development. II. Morphological and synaptic maturation from fetal to adult life. J Child Neurol. 2017. In press
  • [Sarnat and Yu, 2016] Sarnat H.B., Yu W. Maturation and dysgenesis of the human olfactory bulb. Brain Pathol. 2016;26:301-318.
  • [Sarnat et al., 1998] Sarnat H.B., Nochlin D., Born D.E. Neuronal nuclear antigen (NeuN) as a marker of neuronal maturation in the early human fetal nervous system. Brain Dev. 1998;20:88-94.
  • [Sarnat et al., 2011] Sarnat H.B., Flores-Sarnat L., Hader W., Bello-Espinosa L. Mitochondrial “hypermetabolic” neurons in paediatric epileptic foci. Can J Neurol Sci. 2011;38:909-917.
  • [Schaal et al., 1998] Schaal B., Marlier L., Soussignan R. Olfactory function in the human fetus: selective neonatal responsiveness to the odor of amniotic fluid. Behav Neurosci. 1998;112:1438.
  • [Schaal et al., 2004] Schaal B., Hummel T., Soussignan R. Olfaction in the fetal and premature infant: functional status and clinical implications. Clin Perinatol. 2004;31:261-285.
  • [Schmidt et al., 2011] Schmidt T.M., Chen S.-K., Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34:572-580.
  • [Stolyarova and Izquierdo, 2015] Stolyarova A., Izquierdo A. Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodelling in adolescence and adulthood. Front Behav Neurosci. 2015;9:115.
  • [Temkin, 1945] Temkin O. The Falling Sickness. Baltimore: The Johns Hopkins Press; 1945. 36-38
  • [Turner and Singer, 1974] Turner J.E., Singer M. An electron microscopic study of the newt () optic nerve. J Comp Neurol. 1974;156:1-18. Triturus viridescens
  • [Ulfig, 2001] Ulfig N. Expression of calbinden and calretinin in the human ganglionic eminence. Pediatr Neurol. 2001;24:357-360.
  • [Ulfig, 2002] Ulfig N. Calcium-binding proteins in the human developing brain. Adv Anat Embryol Cell Biol. 2002;165:1-95.
  • [Webster and Weinberger, 1940] Webster J.E., Weinberger L.M. Convulsions associated with tumors of the cerebellum: clinical and physiological features. Arch Neurol Psychiatry. 1940;43:1163-1184.
  • [West and Doty, 1995] West S.E., Doty R.L. Influence of epilepsy and temporal lobe resection on olfactory function. Epilepsia. 1995;36:531-542.
  • [Wilson et al., 1990] Wilson D.A., Guthrie K.M., Leon M. Modification of olfactory bulb synaptic inhibition by early unilateral olfactory deprivation. Neurosci Lett. 1990;116:250-256.
  • [Willhite et al., 2006] Willhite D.C., Nguyen K.T., Masurkar A.V., Greer C.A., Shepherd G.M., Chen W.R. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA. 2006;103:12592-12597.
  • [Yang et al., 2009] Yang G., Pan F., Gan W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462:920-924.
  • [Yang et al., 2014] Yang G., Lai C.S., Cichon S., Ma L., Li W., Gan G.A. Sleep promotes branch-specific formation of dendritic spines after learning. Science. 2014;344:1173-1178.
  • [Yilmazer-Hanke et al., 2000] Yilmazer-Hanke D.M., Wolf H.K., Schramm J., Elger C.E., Wiestler O.D., Blümcke I. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe eplepsy. J Neuropathol Exp Neurol. 2000;59:907-920.
  • [Zigova et al., 1990] Zigova T., Graziadei P.P.C., Monti Graziadei A.G. Olfactory bulb transplantation into the olfactory bulb of neonatal rats. Brain Res. 1990;513:315-319.