JLE

European Journal of Dermatology

MENU

Calcium - a central regulator of keratinocyte differentiation in health and disease Volume 24, numéro 6, November-December 2014

  • [1] Marcelo C.L., Kim Y.G., Kaine J.L., Voorhees J.J. Stratification, specialization, and proliferation of primary keratinocyte cultures. Evidence of a functioning in vitro epidermal cell system. J Cell Biol. 1978;79:356-370.
  • [2] Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6:331-343.
  • [3] Sun T.T., Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976;9:511-521.
  • [4] Bikle D.D., Xie Z., Tu C.L. Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab. 2012;7:461-472.
  • [5] Tu C.L., Crumrine D.A., Man M.Q. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J Invest Dermatol. 2012;132:2350-2359.
  • [6] Rice R.H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979;18:681-694.
  • [7] Proksch E., Brandner J.M., Jensen J.M. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063-1072.
  • [8] Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S.H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980;19:245-254.
  • [9] Pillai S., Bikle D.D., Hincenbergs M., Elias P.M. Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. J Cell Physiol. 1988;134:229-237.
  • [10] Hennings H., Holbrook K.A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983;143:127-142.
  • [11] Niessen C.M. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007;127:2525-2532.
  • [12] Ng D.C., Su M.J., Kim R., Bikle D.D. Regulation of involucrin gene expression by calcium in normal human keratinocytes. Front Biosci. 1996;1:a16-a24.
  • [13] Huff C.A., Yuspa S.H., Rosenthal D. Identification of control elements 3’ to the human keratin 1 gene that regulate cell type and differentiation-specific expression. J Biol Chem. 1993;268:377-384.
  • [14] Rothnagel J.A., Greenhalgh D.A., Gagne T.A., Longley M.A., Roop D.R. Identification of a calcium-inducible, epidermal-specific regulatory element in the 3’-flanking region of the human keratin 1 gene. J Invest Dermatol. 1993;101:506-513.
  • [15] Seo E.Y., Namkung J.H., Lee K.M. Analysis of calcium-inducible genes in keratinocytes using suppression subtractive hybridization and cDNA microarray. Genomics. 2005;86:528-538.
  • [16] Menon G.K., Grayson S., Elias P.M. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985;84:508-512.
  • [17] Menon G.K., Elias P.M. Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol. 1991;127:57-63.
  • [18] Elias P., Ahn S., Brown B., Crumrine D., Feingold K.R. Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol. 2002;119:1269-1274.
  • [19] Mascia F., Denning M., Kopan R., Yuspa S.H. The black box illuminated: signals and signaling. J Invest Dermatol. 2012;132:811-819.
  • [20] Behne M.J., Sanchez S., Barry N.P. Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis. Arch Dermatol Res. 2011;303:103-115.
  • [21] Celli A., Sanchez S., Behne M., Hazlett T., Gratton E., Mauro T. The epidermal Ca gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys J. 2010;98:911-921. 2+
  • [22] Elias P.M., Nau P., Hanley K. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol. 1998;110:399-404.
  • [23] Menon G.K., Elias P.M., Feingold K.R. Integrity of the permeability barrier is crucial for maintenance of the epidermal calcium gradient. Br J Dermatol. 1994;130:139-147.
  • [24] Mauro T., Bench G., Sidderas-Haddad E., Feingold K., Elias P., Cullander C. Acute barrier perturbation abolishes the Ca and K gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol. 1998;111:1198-1201. 2++
  • [25] Elias P.M., Ahn S.K., Denda M. Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J Invest Dermatol. 2002;119:1128-1136.
  • [26] Bikle D.D., Ratnam A., Mauro T., Harris J., Pillai S. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Invest. 1996;97:1085-1093.
  • [27] Fatherazi S., Belton C.M., Cai S. Calcium receptor message, expression and function decrease in differentiating keratinocytes. Pflügers Arch. 2004;448:93-104.
  • [28] Tu C.L., Chang W., Bikle D.D. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J Invest Dermatol. 2011;131:1119-1128.
  • [29] Popp T., Steinritz D., Breit A. Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. J Invest Dermatol. 2014;134:2183-2191.
  • [30] Tu C.L., Chang W., Xie Z., Bikle D.D. Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem. 2008;283:3519-3528.
  • [31] Tu C.L., Chang W., Bikle D.D. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem. 2001;276:41079-41085.
  • [32] Komuves L., Oda Y., Tu C.L. Epidermal expression of the full-length extracellular calcium-sensing receptor is required for normal keratinocyte differentiation. J Cell Physiol. 2002;192:45-54.
  • [33] Tu C.L., Chang W., Bikle D.D. The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J Invest Dermatol. 2007;127:1074-1083.
  • [34] Fatherazi S., Presland R.B., Belton C.M. Evidence that TRPC4 supports the calcium selective I(CRAC)-like current in human gingival keratinocytes. Pflügers Arch. 2007;453:879-889.
  • [35] Hofmann T., Obukhov A.G., Schaefer M., Harteneck C., Gudermann T., Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259-263.
  • [36] Okada T., Inoue R., Yamazaki K. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem. 1999;274:27359-27370. 2+
  • [37] Müller M., Essin K., Hill K. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem. 2008;283:33942-33954.
  • [38] Tu C.L., Bikle D.D. Role of the calcium-sensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab. 2013;27:415-427.
  • [39] Cai S., Fatherazi S., Presland R.B., Belton C.M., Izutsu K.T. TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J Dermatol Sci. 2005;40:21-28.
  • [40] Peier A.M., Reeve A.J., Andersson D.A. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046-2049.
  • [41] Kida N., Sokabe T., Kashio M. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflügers Arch. 2012;463:715-725.
  • [42] Lee Y.M., Kang S.M., Chung J.H. The role of TRPV1 channel in aged human skin. J Dermatol Sci. 2012;65:81-85.
  • [43] Denda M., Tsutsumi M., Denda S. Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol. 2010;19:791-795.
  • [44] Atoyan R., Shander D., Botchkareva N.V. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol. 2009;129:2312-2315.
  • [45] Clapham D.E., Runnels L.W., Strübing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387-396.
  • [46] Pani B., Cornatzer E., Cornatzer W. Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier's disease. Mol Biol Cell. 2006;17:4446-4458. 2+
  • [47] Leuner K., Kraus M., Woelfle U. Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS One. 2011;6:e14716.
  • [48] Cai S., Fatherazi S., Presland R.B. Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflügers Arch. 2006;452:43-52.
  • [49] Beck B., Lehen’kyi V., Roudbaraki M. TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium. 2008;43:492-505.
  • [50] Woelfle U., Laszczyk M.N., Kraus M. Triterpenes promote keratinocyte differentiation in vitro, ex vivo and in vivo: a role for the transient receptor potential canonical (subtype) 6. J Invest Dermatol. 2010;130:113-123.
  • [51] Nilius B., Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflügers Arch. 2005;451:1-10.
  • [52] Radtke C., Sinis N., Sauter M. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res. 2011;32:150-159.
  • [53] Chung M.K., Lee H., Mizuno A., Suzuki M., Caterina M.J. TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem. 2004;279:21569-21575.
  • [54] Mandadi S., Sokabe T., Shibasaki K. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflügers Arch. 2009;458:1093-1102.
  • [55] Denda M., Fuziwara S., Inoue K. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun. 2001;285:1250-1252.
  • [56] Bodó E., Bíró T., Telek A. A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol. 2005;166:985-998.
  • [57] Tóth B.I., Dobrosi N., Dajnoki A. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Dermatol. 2011;131:1095-1104.
  • [58] Lee Y.M., Kim Y.K., Kim K.H., Park S.J., Kim S.J., Chung J.H. A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol. 2009;219:766-775.
  • [59] Southall M.D., Li T., Gharibova L.S., Pei Y., Nicol G.D., Travers J.B. Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther. 2003;304:217-222.
  • [60] Huang J., Ding L., Shi D. Transient receptor potential vanilloid-1 participates in the inhibitory effect of ginsenoside Rg1 on capsaicin-induced interleukin-8 and prostaglandin E2 production in HaCaT cells. J Pharm Pharmacol. 2012;64:252-258.
  • [61] Lee Y.M., Kang S.M., Lee S.R. Inhibitory effects of TRPV1 blocker on UV-induced responses in the hairless mice. Arch Dermatol Res. 2011;303:727-736.
  • [62] Steinhoff M., Bíró T. A TR(I)P to pruritus research: role of TRPV3 in inflammation and itch. J Invest Dermatol. 2009;129:531-535.
  • [63] Bang S., Yoo S., Yang T.J., Cho H., Hwang S.W. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem. 2010;285:19362-19371.
  • [64] Nilius B., Bíró T. TRPV3: a “more than skinny” channel. Exp Dermatol. 2013;22:447-452.
  • [65] Nilius B., Bíró T., Owsianik G. TRPV3: time to decipher a poorly understood family member! J Physiol. 2014;592:295-304.
  • [66] Cheng X., Jin J., Hu L. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell. 2010;141:331-343.
  • [67] Miyamoto T., Petrus M.J., Dubin A.E., Patapoutian A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun. 2011;2:369.
  • [68] Sokabe T., Fukumi-Tominaga T., Yonemura S., Mizuno A., Tominaga M. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem. 2010;285:18749-18758.
  • [69] Lehen’kyi V., Beck B., Polakowska R. TRPV6 is a Ca entry channel essential for Ca-induced differentiation of human keratinocytes. J Biol Chem. 2007;282:22582-22591. 2+2+
  • [70] Bikle D.D., Gee E., Pillai S. Regulation of keratinocyte growth, differentiation, and vitamin D metabolism by analogs of 1,25-dihydroxyvitamin D. J Invest Dermatol. 1993;101:713-718.
  • [71] Bíró T., Kovács L. An “ice-cold” TR(i)P to skin biology: the role of TRPA1 in human epidermal keratinocytes. J Invest Dermatol. 2009;129:2096-2099.
  • [72] Jain A., Brönneke S., Kolbe L., Stäb F., Wenck H., Neufang G. TRP-channel-specific cutaneous eicosanoid release patterns. Pain. 2011;152:2765-2772.
  • [73] Silva C.R., Oliveira S.M., Rossato M.F. The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci. 2011;88:1077-1087.
  • [74] Shiba T., Maruyama T., Kurohane K., Iwasaki Y., Watanabe T., Imai Y. TRPA1 and TRPV1 activation is a novel adjuvant effect mechanism in contact hypersensitivity. J Neuroimmunol. 2009;207:66-74.
  • [75] Tsutsumi M., Denda S., Ikeyama K., Goto M., Denda M. Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Invest Dermatol. 2010;130:1945-1948.
  • [76] Kraft R., Harteneck C. The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflügers Arch. 2005;451:204-211.
  • [77] Kurohane K., Sahara Y., Kimura A. Lack of transient receptor potential melastatin 8 activation by phthalate esters that enhance contact hypersensitivity in mice. Toxicol Lett. 2013;217:192-196.
  • [78] Berridge M.J., Irvine R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312:315-321.
  • [79] Liou J., Kim M.L., Heo Do W. STIM is a Ca sensor essential for Ca-store-depletion-triggered Cainflux. Curr Biol. 2005;15:1235-1241. 2+2+2+
  • [80] Roos J., DiGregorio P.J., Yeromin AV. STIM1, an essential and conserved component of store-operated Ca channel function. J Cell Biol. 2005;169:435-445. 2+
  • [81] Várnai P., Hunyady L., Balla T. STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci. 2009;30:118-128.
  • [82] Vig M., Peinelt C., Beck A. CRACM1 is a plasma membrane protein essential for store-operated Ca entry. Science. 2006;312:1220-1223. 2+
  • [83] Ross K., Whitaker M., Reynolds N.J. Agonist-induced calcium entry correlates with STIM1 translocation. J Cell Physiol. 2007;211:569-576.
  • [84] Numaga-Tomita T., Putney J.W. Role of STIM1 and Orai1-mediated calcium entry in Ca-induced epidermal keratinocyte differentiation. J Cell Sci. 2013;126:605-612. 2+
  • [85] Jans R., Mottram L., Johnson D.L. Lysophosphatidic acid promotes cell migration through STIM1- and Orai1-mediated Ca(i) mobilization and NFAT2 activation. J Invest Dermatol. 2013;133:793-802. 2+
  • [86] Gwack Y., Srikanth S., Oh-Hora M. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol. 2008;28:5209-5222.
  • [[87]] Saul S., Stanisz H., Backes C.S., Schwarz E.C., Hoth M. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol. 2013. pii:S0014-2999(13)00882-0
  • [88] Moran M.M., McAlexander M.A., Bíró T., Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov. 2011;10:601-620.
  • [89] Ross S.E. Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease. Curr Opin Neurobiol. 2011;21:880-887.
  • [90] Schön M.P., Boehncke W.H. Psoriasis. N Engl J Med. 2005;352:1899-1912.
  • [91] Quatresooz P., Hermanns-Lê T., Piérard G.E., Humbert P., Delvenne P., Piérard-Franchimont C. Ustekinumab in psoriasis immunopathology with emphasis on the Th17-IL23 axis: a primer. J Biomed Biotechnol. 2012;2012:147413.
  • [92] Cai Y., Fleming C., Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 2012;9:302-309.
  • [93] Chong H.T., Kopecki Z., Cowin A.J. Lifting the silver flakes: the pathogenesis and management of chronic plaque psoriasis. Biomed Res Int. 2013;2013:168321.
  • [94] Karvonen S.L., Korkiamäki T., Ylä-Outinen H. Psoriasis and altered calcium metabolism: downregulated capacitative calcium influx and defective calcium-mediated cell signaling in cultured psoriatic keratinocytes. J Invest Dermatol. 2000;114:693-700.
  • [95] Cohen A.D., Kagen M., Friger M., Halevy S. Calcium channel blockers intake and psoriasis: a case-control study. Acta Derm Venereol. 2001;81:347-349.
  • [96] Ioulios P., Charalampos M., Efrossini T. The spectrum of cutaneous reactions associated with calcium antagonists: a review of the literature and the possible etiopathogenic mechanisms. Dermatol Online J. 2003;9:6.
  • [97] Feske S., Skolnik E.Y., Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12:532-547.
  • [98] Eichenfield L.F., Ellis C.N., Mancini A.J., Paller A.S., Simpson E.L. Atopic dermatitis: epidemiology and pathogenesis update. Semin Cutan Med Surg. 2012;31:S3-5.
  • [99] Wolf R., Wolf D. Abnormal epidermal barrier in the pathogenesis of atopic dermatitis. Clin Dermatol. 2012;30:329-334.
  • [100] Bos J.D., Brenninkmeijer E.E.A., Schram M.E., Middelkamp-Hup M.A., Spuls P.I., Smitt J.H.S. Atopic eczema or atopiform dermatitis. Exp Dermatol. 2010;19:325-331.
  • [101] Howell M.D., Fairchild H.R., Kim B.E. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-2258.
  • [102] Kim B.E., Leung D.Y.M., Boguniewicz M., Howell M.D. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332-337.
  • [103] Boguniewicz M., Leung D.Y.M. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011;242:233-246.
  • [104] Sun X.D., You Y., Zhang L. The possible role of TRPC6 in atopic dermatitis. Med Hypotheses. 2012;78:42-44.
  • [105] Beck B., Zholos A., Sydorenko V. TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol. 2006;126:1982-1993.
  • [106] Leuner K., Kazanski V., Müller M. Hyperforin–a key constituent of St. John's wort specifically activates TRPC6 channels. FASEB J. 2007;21:4101-4111.
  • [107] Schempp C.M., Winghofer B., Lüdtke R., Simon-Haarhaus B., Schöpf E., Simon J.C. Topical application of St John's wort (Hypericum perforatum L.) and of its metabolite hyperforin inhibits the allostimulatory capacity of epidermal cells. Br J Dermatol. 2000;142:979-984.
  • [108] Schempp C.M., Windeck T., Hezel S., Simon J.C. Topical treatment of atopic dermatitis with St. John's wort cream–a randomized, placebo controlled, double blind half-side comparison. Phytomedicine. 2003;4:31-37. 10 Suppl
  • [109] Shim W.S., Tak M.H., Lee M.H. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27:2331-2337.
  • [110] Yun J.W., Seo J.A., Jang W.H. Antipruritic effects of TRPV1 antagonist in murine atopic dermatitis and itching models. J Invest Dermatol. 2011;131:1576-1579.
  • [111] Yun J.W., Seo J.A., Jeong Y.S. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J Dermatol Sci. 2011;62:8-15.
  • [112] Yoshioka T., Imura K., Asakawa M. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol. 2009;129:714-722.
  • [113] Asakawa M., Yoshioka T., Matsutani T. Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol. 2006;126:2664-2672.
  • [114] Yamamoto-Kasai E., Imura K., Yasui K. TRPV3 as a therapeutic target for itch. J Invest Dermatol. 2012;132:2109-2112.
  • [115] Xu H., Delling M., Jun J.C., Clapham D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006;9:628-635.
  • [116] Tóth B.I., Oláh A., Szöllősi A.G., Bíró T. TRP channels in the skin. Br J Pharmacol. 2014;171:2568-2581.
  • [117] Savignac M., Edir A., Simon M., Hovnanian A. Darier disease: a disease model of impaired calcium homeostasis in the skin. Biochim Biophys Acta. 2011;1813:1111-1117.
  • [118] Sakuntabhai A., Ruiz-Perez V., Carter S. Mutations in ATP2A2, encoding a Ca pump, cause Darier disease. Nat Genet. 1999;21:271-277. 2+
  • [119] Celli A., Mackenzie D.S., Zhai Y. SERCA2-controlled Ca+-dependent keratinocyte adhesion and differentiation is mediated via the sphingolipid pathway: a therapeutic target for Darier's disease. J Invest Dermatol. 2012;132:1188-1195. 2
  • [120] Pani B., Singh B.B. Darier's disease: a calcium-signaling perspective. Cell Mol Life Sci. 2008;65:205-211.
  • [121] Shull G.E., Miller M.L., Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca pump dysfunction. Biofactors. 2011;37:150-158. 2+
  • [122] Więckiewicz W., Bieniek A., Więckiewicz M., Sroczyk L. Interdisciplinary treatment of BCC located on the nose–review of literature. Adv Clin Exp Med. 2013;22:289-293.
  • [123] Ratushny V., Gober M.D., Hick R., Ridky T.W., Seykora J.T. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest. 2012;122:464-472.
  • [124] Fusi C., Materazzi S., Minocci D. Transient receptor potential vanilloid 4 (TRPV4) is downregulated in keratinocytes in human non-melanoma skin cancer. J Invest Dermatol. 2014. 10.1038/jid.2014.145
  • [125] Pillai S., Bikle D.D., Mancianti M.L., Hincenbergs M. Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines. Exp Cell Res. 1991;192:567-573.
  • [126] Moore C., Cevikbas F., Pasolli H.A. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci USA. 2013;110:E3225-E3234.
  • [127] Lin Z., Chen Q., Lee M. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet. 2012;90:558-564.
  • [128] Lai-Cheong J.E., Sethuraman G., Ramam M., Stone K., Simpson M.A., McGrath J.A. Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol. 2012;167:440-442.
  • [129] Attia A.M., Bakry O.A. Olmsted syndrome. J Dermatol Case Rep. 2013;7:42-45.
  • [130] Kariminejad A., Barzegar M., Abdollahimajd F., Pramanik R., McGrath J.A. Olmsted syndrome in an Iranian boy with a new de novo mutation in TRPV3. Clin Exp Dermatol. 2014;39:492-495.
  • [131] Eytan O., Fuchs-Telem D., Mevorach B. Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. J Invest Dermatol. 2014;134:1752-1754.
  • [132] Lin Z., Chen Q., Lee M. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet. 2012;90:558-564.
  • [133] Duchatelet S., Guibbal L., de Veer S. Olmsted syndrome with erythromelalgia caused by recessive TRPV3 mutations. Br J Dermatol. 2014. 10.1111/bjd.12951
  • [134] Hammerland L.G., Garrett J.E., Hung B.C., Levinthal C., Nemeth E.F. Allosteric activation of the Careceptor expressed in Xenopus laevis oocytes by NPS 467 or NPS 568. Mol Pharmacol. 1998;53:1083-1088. 2+