John Libbey Eurotext

European Cytokine Network

Skin innate immune response to flaviviral infection Volume 28, numéro 2, June 2017

  • [1] Brown C. Zika virus outbreaks in Asia and South America. Can Med Assoc J. 2016;188:E34.
  • [2] Krow-Lucal E., Lindsey N.P., Lehman J., Fischer M., Staples J.E. West Nile virus and other nationally notifiable arboviral diseases, United States, 2015. Morb Mortal Wkly Rep. 2017;66:51-55.
  • [3] Schneider B.S., Soong L., Girard Y.A., Campbell G., Mason P., Higgs S. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 2006;19:74-82.
  • [4] Brown A.N., Kent K.A., Bennett C.J., Bernard K.A. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology. 2007;368:422-430.
  • [5] Briant L., Desprès P., Choumet V., Missé D. Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology. 2014;464–465:26-32.
  • [6] Nestle F.O., Di Meglio P., Qin J.-Z., Nickoloff B.J. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679-691.
  • [7] Kubo A., Nagao K., Yokouchi M., Sasaki H., Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206:2937-2946.
  • [8] Seneschal J., Clark R.A., Gehad A., Baecher-Allan C.M., Kupper T.S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36:873-884.
  • [9] WHO. Scientific working group report on Dengue. Geneva: WHO; 2008.
  • [10] Simmons C.P., Farrar J.J., Nguyen van V.C., Wills B. Dengue. N Engl J Med. 2012;366:1423-1432.
  • [11] Wu S.J., Grouard-Vogel G., Sun W. Human skin Langerhans cells are targets of Dengue virus infection. Nat Med. 2000;6:816-820.
  • [12] Limon-Flores A.Y., Perez-Tapia M., Estrada-Garcia I. Dengue virus inoculation to human skin explants: an effective approach to assess the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol. 2005;86:323-334. in situ
  • [13] Schmid M.A., Harris E. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for Dengue virus replication. PLoS Pathog. 2014;10:e1004541.
  • [14] Taweechaisupapong S., Sriurairatana S., Angsubhakorn S., Yoksan S., Bhamarapravati N. and studies on the morphological change in the monkey epidermal Langerhans cells following exposure to Dengue 2 (16681) virus. Southeast Asian J Trop Med Public Health. 1996;27:664-672. In vivoin vitro
  • [15] Cerny D., Haniffa M., Shin A. Selective susceptibility of human skin antigen presenting cells to productive Dengue virus infection. PLoS Pathog. 2014;10:e1004548.
  • [16] Surasombatpattana P., Hamel R., Patramool S. Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infect Genet Evol. 2011;11:1664-1673.
  • [17] Bustos-Arriaga J., García-Machorro J., León-Juárez M. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts. PLoS Negl Trop Dis. 2011;5:e1420.
  • [18] Bustos-Arriaga J., Mita-Mendoza N.K., Lopez-Gonzalez M. Soluble mediators produced by the crosstalk between microvascular endothelial cells and Dengue-infected primary dermal fibroblasts inhibit Dengue virus replication and increase leukocyte transmigration. Immunol Res. 2016;64:392-403.
  • [19] Kurane I., Janus J., Ennis F.A. Dengue virus infection of human skin fibroblasts production of IFN-beta, IL-6 and GM-CSF. Arch Virol. 1992;124:21-30. in vitro
  • [20] St John A.L., Rathore A.P.S., Raghavan B., Ng M.-L., Abraham S.N. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to Dengue virus-induced vascular leakage. eLife. 2013;2:e00481.
  • [21] Chu Y.-T., Wan S.-W., Anderson R., Lin Y.-S. Mast cell-macrophage dynamics in modulation of Dengue virus infection in skin. Immunology. 2015;146:163-172.
  • [22] Troupin A., Shirley D., Londono-Renteria B. A role for human skin mast cells in Dengue virus infection and systemic spread. J Immunol. 2016;197:382-4391.
  • [23] Dauphin G., Zientara S., Zeller H., Murgue B. West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis. 2004;27:343-355.
  • [24] Di Sabatino D., Bruno R., Sauro F. Epidemiology of West Nile disease in Europe and in the Mediterranean Basin from 2009 to 2013. Biomed Res Int. 2014;2014:907852.
  • [25] O’Leary D.R., Marfin A.A., Montgomery S.P. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 2004;4:61-70.
  • [26] Lim P.-Y., Behr M.J., Chadwick C.M., Shi P.-Y., Bernard K.A. Keratinocytes are cell targets of West Nile virus . J Virol. 2011;85:5197-5201. in vivo
  • [27] Nemeth N., Young G., Ndaluka C., Bielefeldt-Ohmann H., Komar N., Bowen R. Persistent West Nile virus infection in the house sparrow (Passer domesticus). Arch Virol. 2009;154:783-789.
  • [28] Appler K.K., Brown A.N., Stewart B.S. Persistence of West Nile virus in the central nervous system and periphery of mice. PloS One. 2010;5:e10649.
  • [29] Arnold S.J., Osvath S.R., Hall R.A., King N.J.C., Sedger L.M. Regulation of antigen processing and presentation molecules in West Nile virus-infected human skin fibroblasts. Virology. 2004;324:286-296.
  • [30] Hoover L.I., Fredericksen B.L. IFN-dependent and -independent reduction in West Nile virus infectivity in human dermal fibroblasts. Viruses. 2014;6:1424-1441.
  • [31] Davis C.W., Nguyen H.-Y., Hanna S.L., Sánchez M.D., Doms R.W., Pierson T.C. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol. 2006;80:1290-1301.
  • [32] Qian F., Wang X., Zhang L. Impaired interferon signaling in dendritic cells from older donors infected with West Nile virus. J Infect Dis. 2011;203:1415-1424. in vitro
  • [33] Martina B.E.E., Koraka P., van den Doel P., Rimmelzwaan G.F., Haagmans B.L., Osterhaus A.D.M.E. DC-SIGN enhances infection of cells with glycosylated West Nile virus and virus replication in human dendritic cells induces production of IFN-alpha and TNF-alpha. Virus Res. 2008;135:64-71. in vitro
  • [34] Silva M.C., Guerrero-Plata A., Gilfoy F.D., Garofalo R.P., Mason P.W. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol. 2007;81:13640-13648.
  • [35] Rawle D.J., Setoh Y.X., Edmonds J.H., Khromykh A.A. Comparison of attenuated and virulent West Nile virus strains in human monocyte-derived dendritic cells as a model of initial human infection. J Virol. 2015;12:46.
  • [36] Kovats S., Turner S., Simmons A., Powe T., Chakravarty E., Alberola-Ila J. West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol. 2016;186:214-226.
  • [37] Tupin E., Kinjo Y., Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol. 2007;5:405-417.
  • [38] Brennan P.J., Brigl M., Brenner M.B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13:101-117.
  • [39] Schmid E.T., Pang I.K., Carrera Silva E.A. AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. eLife. 2016;5.
  • [40] Johnston L.J., Halliday G.M., King N.J. Phenotypic changes in Langerhans cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol. 1996;70:4761-4766.
  • [41] Johnston L.J., Halliday G.M., King N.J. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol. 2000;114:560-568.
  • [42] Cumberbatch M., Dearman R.J., Kimber I. Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta for migration. Immunology. 1997;92:388-395.
  • [43] Byrne S.N., Halliday G.M., Johnston L.J., King N.J. Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol. 2001;117:702-709.
  • [44] Mlakar J., Korva M., Tul N. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951-958.
  • [45] Haddow A.D., Schuh A.J., Yasuda C.Y. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis. 2012;6:e1477.
  • [46] Hamel R., Dejarnac O., Wichit S. Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880-8896.
  • [47] Bowen J.R., Quicke K.M., Maddur M.S. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog. 2017;13:e1006164.
  • [48] Proost P., Vynckier A.-K., Mahieu F., Van Damme J. Microbial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-gamma and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. Eur J Immunol. 2003;33:3146-3153.
  • [49] Tamagawa-Mineoka R. Important roles of platelets as immune cells in the skin. J Dermatol Sci. 2015;77:93-101.
  • [50] Gasque P., Jaffar-Bandjee M.C. The immunology and inflammatory responses of human melanocytes in infectious diseases. J Infect. 2015;71:413-421.
  • [51] Brinton M.A. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013;6:13-53.
  • [52] Perera-Lecoin M., Meertens L., Carnec X., Amara A. Flavivirus entry receptors: an update. Viruses. 2013;6:69-88.
  • [53] Shipley J.G., Vandergaast R., Deng L., Mariuzza R.A., Fredericksen B.L. Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome. Virology. 2012;432:232-238.
  • [54] Westaway E.G., Khromykh A.A., Mackenzie J.M. Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology. 1999;258:108-117.
  • [55] Chambers T.J., Hahn C.S., Galler R., Rice C.M. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649-688.
  • [56] Nasirudeen A.M.A., Wong H.H., Thien P., Xu S., Lam K.-P., Liu D.X. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of Dengue virus infection. PLoS Negl Trop Dis. 2011;5:e926.
  • [57] Lebre M.C., van der Aar A.M.G., van Baarsen L. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127:331-341.
  • [58] Renn C.N., Sanchez D.J., Ochoa M.T. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol. 2006;177:298-305.
  • [59] Yu N., Zhang S., Zuo F., Kang K., Guan M., Xiang L. Cultured human melanocytes express functional toll-like receptors 2-4, 7 and 9. J Dermatol Sci. 2009;56:113-120.
  • [60] Kulka M., Fukuishi N., Rottem M., Mekori Y.A., Metcalfe D.D. Mast cells, which interact with , up-regulate genes associated with innate immunity and become less responsive to Fc(epsilon)RI-mediated activation. J Leukoc Biol. 2006;79:339-350. Escherichia coli
  • [61] Zhang F.X., Kirschning C.J., Mancinelli R. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem. 1999;274:7611-7614.
  • [62] Faure E., Equils O., Sieling P.A. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem. 2000;275:11058-11063.
  • [63] Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135-145.
  • [64] Akira S. TLR signaling. Curr Top Microbiol Immunol. 2006;311:1-16.
  • [65] Lester S.N., Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426:1246-1264.
  • [66] Kato H., Takeuchi O., Sato S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101-105.
  • [67] Pichlmair A., Schulz O., Tan C.P. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997-1001.
  • [68] Schlee M., Roth A., Hornung V. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity. 2009;31:25-34.
  • [69] Bruns A.M., Pollpeter D., Hadizadeh N., Myong S., Marko J.F., Horvath C.M. ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). J Biol Chem. 2013;288:938-946.
  • [70] Rothenfusser S., Goutagny N., DiPerna G. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol. 2005;175:5260-5268.
  • [71] Satoh T., Kato H., Kumagai Y. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A. 2010;107:1512-1517.
  • [72] Sato M., Suemori H., Hata N. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity. 2000;13:539-548.
  • [73] Kawai T., Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1-20.
  • [74] Suthar M.S., Aguirre S., Fernandez-Sesma A. Innate immune sensing of flaviviruses. PLoS Pathog. 2013;9:e1003541.
  • [75] Tsai Y.-T., Chang S.-Y., Lee C.-N., Kao C.-L. Human TLR3 recognizes Dengue virus and modulates viral replication . Cell Microbiol. 2009;11:604-615. in vitro
  • [76] Wang T., Town T., Alexopoulou L., Anderson J.F., Fikrig E., Flavell R.A. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366-1373.
  • [77] Daffis S., Samuel M.A., Suthar M.S., Gale M., Diamond M.S. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008;82:10349-10358.
  • [78] Fredericksen B.L., Keller B.C., Fornek J., Katze M.G., Gale M. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008;82:609-616.
  • [79] Fredericksen B.L., Smith M., Katze M.G., Shi P.-Y., Gale M. The host response to West Nile virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol. 2004;78:7737-7747.
  • [80] Fredericksen B.L., Gale M. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol. 2006;80:2913-2923.
  • [81] Wang J.P., Liu P., Latz E., Golenbock D.T., Finberg R.W., Libraty D.H. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol. 2006;177:7114-7121.
  • [82] Sun P., Fernandez S., Marovich M.A. Functional characterization of blood myeloid and plasmacytoid dendritic cells after infection with Dengue virus. Virology. 2009;383:207-215. ex vivo
  • [83] Paladino P., Cummings D.T., Noyce R.S., Mossman K.L. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J Immunol. 2006;177:8008-8016.
  • [84] McCracken M.K., Christofferson R.C., Chisenhall D.M., Mores C.N. Analysis of early Dengue virus infection in mice as modulated by probing. J Virol. 2014;88:1881-1889. Aedes aegypti
  • [85] Welte T., Reagan K., Fang H. Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J Gen Virol. 2009;90:2660-2668.
  • [86] Loo Y.-M., Fornek J., Crochet N. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82:335-345.
  • [87] Olagnier D., Scholte F.E.M., Chiang C. Inhibition of Dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol. 2014;88:4180-4194.
  • [88] Balachandran S., Roberts P.C., Brown L.E. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity. 2000;13:129-141.
  • [89] Sadler A.J., Williams B.R.G. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559-568.
  • [90] Errett J.S., Suthar M.S., McMillan A., Diamond M.S., Gale M. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol. 2013;87:11416-11425.
  • [91] Daffis S., Samuel M.A., Keller B.C., Gale M., Diamond M.S. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 2007;3:e106.
  • [92] Daffis S., Suthar M.S., Szretter K.J., Gale M., Diamond M.S. Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog. 2009;5:e1000607.
  • [93] Suthar M.S., Ma D.Y., Thomas S. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 2010;6:e1000757.
  • [94] Lazear H.M., Diamond M.S. New insights into innate immune restriction of West Nile virus infection. Curr Opin Virol. 2015;11:1-6.
  • [95] Goubau D., Deddouche S., Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38:855-869.
  • [96] Suthar M.S., Ramos H.J., Brassil M.M. The RIG-I-like receptor LGP2 controls CD8(+) T cell survival and fitness. Immunity. 2012;37:235-248.
  • [97] Cai X., Chiu Y.-H., Chen Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54:289-296.
  • [98] Schoggins J.W. Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol. 2014;6:40-46.
  • [99] Schoggins J.W., MacDuff D.A., Imanaka N., Gainey M.D., Shrestha B., Eitson J.L. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505:691-695.
  • [100] Lamkanfi M., Dixit V.M. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187:597-602.
  • [101] Ramos H.J., Lanteri M.C., Blahnik G. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8:e1003039.
  • [102] Bozza F.A., Cruz O.G., Zagne S.M.O. Multiplex cytokine profile from Dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis. 2008;8:86.
  • [103] Hornung V., Ablasser A., Charrel-Dennis M. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514-518.
  • [104] Gack M.U., Diamond M.S. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol. 2016;20:119-128.
  • [105] Gillespie L.K., Hoenen A., Morgan G., Mackenzie J.M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol. 2010;84:10438-10447.
  • [106] den Boon J.A., Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol. 2010;64:241-256.
  • [107] Daffis S., Szretter K.J., Schriewer J. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468:452-456.
  • [108] Szretter K.J., Daniels B.P., Cho H. 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8:e1002698.
  • [109] Clarke B.D., Roby J.A., Slonchak A., Khromykh A.A. Functional non-coding RNAs derived from the flavivirus 3′ untranslated region. Virus Res. 2015;206:53-61.
  • [110] Pijlman G.P., Funk A., Kondratieva N. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4:579-591.
  • [111] Schuessler A., Funk A., Lazear H.M. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol. 2012;86:5708-5718.
  • [112] Manokaran G., Finol E., Wang C. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science. 2015350217-350221.
  • [113] Angleró-Rodríguez Y.I., Pantoja P., Sariol C.A. Dengue virus subverts the interferon induction pathway via NS2B/3 protease-IκB kinase epsilon interaction. Clin Vaccine Immunol. 2014;21:29-38.
  • [114] Styer L.M., Kent K.A., Albright R.G., Bennett C.J., Kramer L.D., Bernard K.A. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 2007;3:1262-1270.
  • [115] Surasombatpattana P., Ekchariyawat P., Hamel R. saliva contains a prominent 34-kDa protein that strongly enhances Dengue virus replication in human keratinocytes. J Invest Dermatol. 2014;134:281-284. Aedes aegypti
  • [116] Fontaine A., Diouf I., Bakkali N. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4:187.
  • [117] Moser L.A., Lim P.-Y., Styer L.M., Kramer L.D., Bernard K.A. Parameters of mosquito-enhanced West Nile virus infection. J Virol. 2015;90:292-299.
  • [118] Schmid M.A., Glasner D.R., Shah S., Michlmayr D., Kramer L.D., Harris E. Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and Dengue pathogenesis during antibody-dependent enhancement. PLoS Pathog. 2016;12:e1005676.
  • [119] Schneider B.S., Soong L., Coffey L.L., Stevenson H.L., McGee C.E., Higgs S. saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PloS One. 2010;5:e11704. Aedes aegypti
  • [120] Surasombatpattana P., Patramool S., Luplertlop N., Yssel H., Missé D. saliva enhances Dengue virus infection of human keratinocytes by suppressing innate immune responses. J Invest Dermatol. 2012;132:2103-2105. Aedes aegypti