John Libbey Eurotext

European Cytokine Network

Pulmonary artery hypertension: pertinent vasomotorial cytokines Volume 28, numéro 1, March 2017

  • [1] Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122:4306-4313.
  • [2] Archer S.L., Weir E.K., Wilkins M.R. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045-2066.
  • [3] Haddad F., Doyle R., Murphy D.J., Hunt S.A. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinicalimportance, and management of right ventricular failure. Circulation. 2008;117:1717-1731.
  • [4] Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140-1151.
  • [5] Drake J.I., Gomez-Arroyo J., Dumur C.I. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Physiol Genomics. 2013;45:449-461.
  • [6] Bogaard H.J., Natarajan R., Mizuno S. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182:652-660.
  • [7] Wang L., Zhou Y., Li M., Zhu Y. Expression of hypoxia-inducible factor-1α, endothelin-1 and adrenomedullin in newborn rats with hypoxia-induced pulmonary hypertension. Exp Ther Med. 2014;8:335-339.
  • [8] Pang Y.S., Chen M.W., Han Y.L., Zeng M. Pulmonary arterial smooth muscle cell and pulmonary artery hypertension. J Appl Chin Pediatr. 2009;24:1046-1048.
  • [9] Nakanishi K., Osada H., Uenoyama M. Expressions of adrenomedullin mRNA and protein in rats with hypobaric hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2004;286:H2159-H2168.
  • [10] Eul B., Rose F., Krick S. Impact of HIF-1α and HIF-2α on proliferation and migration of human pulmonary artery fibroblasts in hypoxia. FASEB J. 2006;20:163-165.
  • [11] Ball M.K., Waypa G.B., Mungai P.T. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med. 2014;189:314-324.
  • [12] Kim Y.M., Barnes E.A., Alvira C.M., Ying L., Reddy S., Cornfield D.N. Hypoxia-inducible factor-1α in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ Res. 2013;112:1230-1233.
  • [13] Pinto-Sietsma S.J., Paul M. A role for endothelin in the pathogenesis of hypertension: fact or fiction? Kidney Int Suppl. 1998;67:S115-121.
  • [14] Rosanò L., Spinella F., Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2013;13:637-651.
  • [15] Li M., Liu Y., Jin F. Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells. FEBS Lett. 2012;586:3888-3893. 10.1016/j.febslet.2012.08.036
  • [[16]] Satwiko M.G., Ikeda K., Nakayama K. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun. 2015;465:356-362. 10.1016/j.bbrc.2015.08.002
  • [17] Liu C., Chen J., Gao Y., Deng B., Liu K. Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst Rev. 2013;2:CD004434.
  • [18] Rubens C., Ewert R., Halank M., Wensel R., Orzechowski H.D., Schultheiss H.P. Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest. 2001;120:1562-1569.
  • [19] Dupuis J., Hoeper M.M. Endothelin receptor antagonists in pulmonary arterial hypertension. Eur Respir J. 2008;31:407-415.
  • [20] Ames R.S., Sarau H.M., Chambers J.K. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature. 1999;401:282-286.
  • [21] [No authors listed]. Guide to Receptors and Channels (GRAC), 4th Edition. Br J Pharmacol 2009; 158: S1-254.
  • [22] Zhang Y., Li J., Cao J. Effect of chronic hypoxia on contents of urotensin II and its functional receptors in rat myocardium. Heart Vessels. 2002;16:64-68.
  • [23] Qi J., Du J., Tang X., Li J., Wei B., Tang C. The upregulation of endothelial nitric oxide synthase and UTII is associated with PAH and vascular diseases in rats produced by aortocaval shunting. Heart Vessels. 2004;19:81-88.
  • [24] Chen Y.H., Zhao M.W., Yao W.Z., Pang Y.Z., Tang C.S. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin II. Chin Med J (Engl). 2004;117:37-41.
  • [25] Zhang W.X., Liang Y.F., Wang X.M. Urotensin upregulates transforming growth factor-β expression of asthma airway through ERK-dependent pathway. Mol Cell Biochem. 2012;364:291-298. 1
  • [26] Douglas S.A., Sulpizio A.C., Piercy V. Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. Br J Pharmacol. 2000;131:1262-1274.
  • [27] Hay D.W., Luttmann M.A., Douglas S.A. Human urotensin-II is a potent spasmogen of primate airway smooth muscle. Br J Pharmacol. 2000;131:10-12.
  • [28] MacLean M.R., Alexander D., Stirrat A. Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. Br J Pharmacol. 2000;130:201-204.
  • [29] Ross B., McKendy K., Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1156-R1172.
  • [30] Watanabe T., Arita S., Shiraishi Y. Human urotensin II promotes hypertension and atherosclerotic cardiovascular diseases. Curr Med Chem. 2009;16:550-563.
  • [31] Djordjevic T., Görlach A. Urotensin-II in the lung: a matter for vascular remodelling and pulmonary hypertension? Thromb Haemost. 2007;98:952-962. http://dx.doi.org/10.1160/TH07-04-0294
  • [32] Djordjevic T., BelAiba R.S., Bonello S., Pfeilschifter J., Hess J., Görlach A. Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol. 2005;25:519-525.
  • [33] Rong X., Wu H.P., Qiu H.X. Expression and role of urotensin II on the lung of patients with pulmonary hypertension with congenital heart disease. Zhonghua Er Ke Za Zhi. 2012;50:689-691.
  • [34] Onat A.M., Pehlivan Y., Turkbeyler I.H. Urotensin inhibition with palosuran could be a promising alternative in pulmonary arterial hypertension. Inflammation. 2013;36:405-412.
  • [35] Behm D.J., Aiyar N.V., Olzinski A.R. GSK1562590, a slowly dissociating urotensin-II receptor antagonist, exhibits prolonged pharmacodynamic activity . Br J Pharmacol. 2010;161:207-228. ex vivo
  • [36] Hamik A., Lin Z., Kumar A. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282:13769-13779.
  • [37] Shatat M.A., Tian H., Zhang R. Endothelial Krüppel-like factor 4 modulates pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2014;50:647-653.
  • [38] Shatat M.A., Peachey J., Hamik A. Krüppel-like factor 4 modulates pulmonary arterial endothelial cells modulates smooth muscle cell phenotype. Am J Respir Cell Mol Biol. 2016;193:A2222. http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A2222
  • [39] Tugal D., Jain M.K., Simon D.I. Endothelial KLF4: crippling vascular injury? J Am Heart Assoc. 2014;3:e000769.
  • [40] Li X.W., Du J., Li Y.J. The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013;29:182-6192.
  • [41] Bivalacqua T.J., Hyman A.L., Kadowitz P.J., Paolocci N., Kass D.A., Champion H.C. Role of calcitonin gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary hypertension in the mouse. Influence of gene transfer . Regul Pept. 2002;108:129-133. in vivo
  • [42] Ghatta S., Nimmagadda D. Calcitonin gene-related peptide: understanding its role. Indian J Pharmacol. 2004;36:277-283.
  • [43] Li X.W., Hu C.P., Wu W.H., Zhang W.F., Zou X.Z., Li Y.J. Inhibitory effect of calcitonin gene-related peptide on hypoxia-induced rat pulmonary artery smooth muscle cells proliferation: role of ERK1/2 and p27. Eur J Pharmacol. 2012;679:117-126.
  • [44] Keith I.M., Tjen-A-Looi S., Kraiczi H., Ekman R. Three-week neonatal hypoxia reduces blood CGRP and causes persistent pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol. 2000;279:H1571-H1578.
  • [45] Bartosik I., Eskilsson J., Ekman R., Akesson A., Scheja A. Correlation between plasma concentrations of calcitonin gene related peptide and pulmonary pressure in patients with systemic sclerosis. Ann Rheum Dis. 2002;61:261-263.
  • [46] Yamamoto A., Takahashi H., Kojima Y. Downregulation of angiopoietin-1 and Tie2 in chronic hypoxic pulmonary hypertension. Respiration. 2008;75:328-338.
  • [47] Zhao Y.D., Campbell A.I., Robb M., Ng D., Stewart D.J. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res. 2003;92:984-991.
  • [48] Rudge J.S., Thurston G., Yancopoulos G.D. Angiopoietin-1 and pulmonary hypertension: cause or cure? Circ Res. 2003;92:947-949.
  • [49] Karapınar H., Esen O., Emiroğlu Y. Serum levels of angiopoietin-1 in patients with pulmonary hypertension due to mitral stenosis. Heart Vessels. 2011;26:536-541.
  • [50] Kümpers P., Nickel N., Lukasz A. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:2291-2300.
  • [51] Dewachter L., Adnot S., Fadel E. Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1025-1033.
  • [52] Li B.B., Jiang Z. Role of serotonin in proliferation of pulmonary arterial smooth muscle cells and remodeling of pulmonary vasculature. Int J Anesth Resus. 2007;28:441-444.
  • [53] Dempsie Y., MacLean M.R. Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol. 2008;155:455-462.
  • [54] Morecroft I., Loughlin L., Nilsen M. Functional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries. J Pharmacol Exp Ther. 2005;313:539-548.
  • [55] Sullivan C.C., Du L., Chu D. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci U S A. 2003;100:12331-12336.
  • [56] Kaumann A.J., Levy F.O. 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther. 2006;111:674-706.
  • [57] Wang J.X., Tang F.K., Xiao J. Expression and distribution of 5-HTlB receptors in lung tissue in rats with hypoxic pulmonary hypertension. Chin J Pathophysiol. 2010;26:1579-1583.
  • [58] Fanburg B.L., Lee S.L. A new role for an old molecule: serotonin as a mitogen. Am J Physiol. 1997;272:L795-806.
  • [59] Eddahibi S., Fabre V., Boni C. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res. 1999;84:329-336.