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Abstract. Although mammalian reovirus exhibits only limited pathogenicity in
humans, it has been, and still remains, instrumental in studies of viral replication
and pathogenesis. Generally considered as cytolytic, this virus can sometimes
establish long-term persistent infections in tissue culture. In fact, in this context,
it constitutes one widely used model to demonstrate coevolution between virus
and host cells. Initially limited to the murine L929 fibroblasts model, further stud-
ies in different cell types appeared in the last few years. Establishment of viral
persistence could also become a preferred approach to isolate new viruses that
are better adapted to their applications in virotherapy, for example as oncolytic
agents against human or animal cancers. A better understanding of the persistence
phenomenon, especially of viral genes involved, is thus essential. The develop-
ment of new tools, such as reverse genetics, appears very promising to achieve
these objectives. Actually, this last approach allows us to establish the biological
significance of mutations found on viruses selected during viral persistence.
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Résumé. Bien qu’étant peu pathogène chez l’humain, le réovirus de mammifère a
été, et demeure, un modèle privilégié d’étude de la réplication et de la pathogenèse
virale. Généralement considéré comme étant cytolytique, ce virus peut parfois
établir des infections persistantes à long terme en culture cellulaire. Dans ce
contexte, il constitue, en fait, un des modèles parmi les plus utilisés pour démon-
trer la coévolution entre virus et cellules. Bien qu’initialement surtout limitées
au modèle des cellules fibroblastiques de souris L929, les dernières années ont
vu apparaître d’autres études au sein de différents types cellulaires. L’utilisation
de la persistance virale pourrait devenir un outil de prédilection pour isoler de
nouveaux virus mieux adaptés à des utilisations virothérapeutiques, par exem-
ple en tant qu’agents oncolytiques contre des cancers humains ou animaux. Une
meilleure compréhension du phénomène de persistance, spécialement des gènes
viraux impliqués, s’avère donc essentielle. Le développement de nouveaux out-
ils, tel que l’utilisation de la génétique inverse, apparaît très prometteur pour
l’atteinte de ces objectifs. Cette dernière approche permet en effet d’établir la
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signification biologique de mutations retrouvées chez les virus sélectionnés lors
de la persistance virale.

Mots clés : réovirus, persistance virale, décapsidation, interféron, évolution
virale
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Figure 1. Reovirus binding and entry. (A) The figure presents
the main steps in viral entry starting from the virion. First, (1) the
virion binds at the cell surface by its trimeric spike protein �1 (black
sphere). Following endocytosis (2), lysosomal proteases action
allows the removal of the �3 protein (in red) and the cleavage of the
�1 protein (in green) (3), allowing the viral particle to cross the endo-
somal membrane. The exit from the endosome (4) occurs with the
release of both the �1 protein and the remaining part of �1. These
last steps involve the participation of cellular proteins acting as
molecular chaperones. The viral particle is finally found in the cyto-
plasm under the form of core, a viral particle completely devoid of
outer capsid proteins and transcriptionally active (5). The released
core allows synthesis of the 3 size classes of viral messenger RNA
(6). (B) The figure presents viral entry when the virion is first partially

by a globular region at the carboxyl-terminal end involved
eview

eneral principles

ytolytic viruses, such as mammalian reovirus (hereafter
eferred to as “reovirus”) can sometimes establish persis-
ent nonlytic infection in tissue culture. Although this is
utside the scope of the present review, the importance of
revisiting” the concept of “cytolytic” viruses was recently
tressed [1]. Indeed, mammalian reovirus, although gene-
ally considered as cytolytic, can be released from certain
ell types in the absence of cell lysis [2, 3].
he phenomenon of viral persistence, thus far from being
nly a laboratory curiosity, can constitute a powerful expe-
imental system to decipher important steps in the viral
eplication cycle. The establishment of viral persistence can
e accompanied by important changes in the properties of
he virus itself, but also of its host cell, and thus constitutes
biologically significant model of virus-host coevolution.
mong mammalian viruses, reovirus has been extensively
sed as a model of viral replication and viral pathogenesis.
ore recently, a renewed interest in the study of this virus

as been noticed since it is currently used in clinical trials for
irotherapeutic approaches against various cancers [4, 5].
eovirus, under his trade name Reolysin®, has in fact been
ranted the status of orphan drugs for various cancers by
oth the Food and Drug Administration (FDA) in the United
tates and the European Medicines Agency (EMA).
ot surprisingly, this virus, despite the fact that it is ge-
break nerally cytolytic, has been the subject of various
tudies concerning its ability to establish and maintain viral
ersistence, essentially in cell culture. Such studies had an
mportant impact on our understanding of reovirus replica-
ion and host-cell interactions in the past and still have the
otential to further contribute to this understanding. Fur-
hermore, such approaches could help to develop practical
pplications for reovirus, by allowing the selection of new
iral variants that are better adapted to infect and destroy
ancer cells, among other things [6, 7].
urprisingly, despite the fact that viral persistence has
ow been obtained from many different cell lines, few
f the resulting adapted viruses had their genomes com-
letely sequenced. Indeed, only the sequence of the
ero-cell-adapted virus obtained in our laboratory has been
ompletely determined to date [8]. The progress in sequen-
ing approaches will certainly allow to correct this situation
n the near future. Furthermore, the advent of plasmid-based
everse genetics now allows to confirm the importance of

he different mutations observed in the adapted viruses.
hese mutations can be separately introduced in a wild-

ype virus backbone, as done in some of our recent works
8, 9].
s discussed later, early events in the viral multiplication

ycle, leading to virus entry, are central to the phenomenon

E6
uncoated by the action of extracellular proteases. (1) The resulting
infectious subviral particle (ISVP) binds to the cell membrane (2)
to be either internalized by endocytosis (3) or, possibly, to directly
penetrate through the plasma membrane (3b), bypassing in both
cases the need for endosomal/lysosomal proteases. In all cases,
the core is then produced (4) allowing transcription as described for
the virion (5, 6).

of viral persistence (figure 1) [10-12]. Following the bin-
ding of the viral �1 protein onto the cell surface, the viral
particle will be internalized. The �1 protein possesses a
long helicoidal portion in its amino-terminal region, inclu-
ding a sequence at the end for anchoring the protein to the
virion. The central region of the protein allows binding to
sialic acids in virus strains that actually possess this pro-
perty, including the Dearing strain of serotype 3, generally
used in the studies of viral persistence. The protein ends
in the binding to the protein receptor mostly used for virus
binding to epithelial cells, the junctional adhesion molecule
(JAM) protein [10, 13]. The cleavage of outer capsid pro-
teins, beginning by the �3 outer capsid protein, first follows
internalization of the viral particle. Cleavage of the outer
capsid protein �1 then allows to generate infectious parti-
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substitutions on �3, especially the Y354H substitution, has
allowed to clearly establish that these substitutions render

V

les referred to as “infectious subviral particles” (ISVPs)
hat can then cross the endosomal membrane toward the
ytoplasm, allowing activation of the transcription from the
nner viral capsid or “core.” Partial uncoating by lysosomal
nzymes, to generate ISVPs, is a limiting factor in a number
f cell types [14-18]. The ISVPs can also be generated by
roteolytic cleavage outside the cells, allowing to bypass
he steps of intracellular uncoating. It should be mentioned
hat the structure of �1 and of the heterohexameric complex
3-�1 [19-21] has been determined and will be discussed

ater on (figure 3 and figure 4).
bout a dozen different cell lines have been reported

o become persistently infected by reovirus under cer-
ain conditions. However, this depends on the definition
iven to “persistent infection.” As an example, infection
f the bat Tb1-Lu cell line results in a productive infec-
ion with minimal cell death [22]. Viral production appears
o slowly decrease with time without actual changes in
ither cells or viruses. This should be rather called “non-
ytic” or “chronic” infection, rather than persistent infection
er se, as will be discussed later. In some cell types in
hich persistent infection was reported without actual cyto-
athic effect, such as in MDCK cells [23], it is probably
similar situation in which viral persistence with all its

onsequences is not necessarily established. Our own data
ere, in fact, quite different in this cell line (unpublished
ata). This raises the question of variations in the cell lines
nd viruses used between laboratories, thus further compli-
ating comparisons. Furthermore, in many cases, viruses
nd cells were poorly characterized following the estab-
ishment of persistence. Another example is the report that
ersistent reovirus infection affects growth properties of
ALB 3T3 murine fibroblasts [24]. In later work it has

ather been demonstrated that reovirus preferentially infects
ransformed murine fibroblast cells while parental cells,
uch as untransformed BALB cells, are quite resistant to
he infection [25, 26]. This suggests that the cell stock
sed during the establishment of viral persistence may have
een partly made of transformed cells, as occurs when
ells are let to stay confluent for a certain period of time.
lternatively, contamination by another cell type remains a
ossibility.
n this review, persistent reovirus infection will be defined
s an infection that is established after a period of cell lysis
n cell types in which infection is cytolytic under usual
onditions. The majority of the cells are then infected but
onstant reinfection is necessary to maintain the infection.
e will see later on that this is accompanied by changes to
oth the virus and the cells involved.
e will now examine in greater details few cellular mo-

els in which reovirus persistent infection was studied more
xtensively.

irologie, Vol 23, n◦ 5, septembre-octobre 2019
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The classical L929 cells model

Initially, most of the work on viral persistence was done
using L929 cells, which are mouse fibroblasts most often
used for reovirus growth. Viral persistence in this cell model
has been reviewed in 1998 [27]; we will briefly summarize
here the major aspects of this model and further discuss
progress made since this last extensive review.
Upon reovirus infection, most L929 cells are readily killed
and destroyed, sometimes in less than 24 hours at 37 ◦C,
depending on multiplicity of infection that was used. How-
ever, it was observed that a small number of cells can
nevertheless survive. These cells will slowly grow with
frequent phases of “crisis” in which extensive cell death
is observed. Nevertheless, following this relatively long
period of persistence establishment, a cell population can
be selected. These cells continuously produce and release
infectious virus in the absence of cell lysis; the virus pro-
duced is being referred to as a PI virus (from Persistent
Infection). The persistently infected cells can eliminate the
virus by long-term exposure to a neutralizing antireovirus
antiserum [28]. Interestingly, these so-called “cured” cells
are quite resistant to the wild-type virus but easily killed
upon infection by the corresponding PI virus. A schematic
summary of the establishment of viral persistence on L929
cells is presented in figure 2A, while figure 2B schema-
tizes the result of virus-cell coevolution. Further work has
shown that cured cells have been selected to express reduced
levels of mature lysosomal proteases known as cathepsins
[29, 30]; these cells are therefore inefficient at removing
the outer viral capsid proteins during viral uncoating. In
parallel, PI viruses have evolved to be able to infect the
cured cells. Studies using gene exchange (reassortment)
have initially found that a major outer capsid protein, �3,
and the viral cell attachment protein, �1, are respectively
involved in establishment and maintenance of viral persis-
tence [31, 32]. To date, the complete genome sequence of
a PI virus from L929 cells has not been obtained, but the
sequence of the genes encoding these two apparently cri-
tical proteins has been. Actually, this sequencing was not
performed directly on PCR products, as is now most com-
monly used, but rather by cloning of cDNAs, always raising
the possibility of sequencing a minor population that is not
representative of the actual replicating virus. It will certainly
be of interest to confirm these sequences on different po-
pulations of PI viruses. However, the study of amino acids
the virion more sensitive to cathepsins [33]. This allows
uncoating in cured cells while the wild-type virus is blocked
under such reduced proteases conditions. Accordingly, PI
viruses are resistant to inhibitors of endosomal acidifica-

E7



Journal Identification = VIR Article Identification = 0791 Date: October 22, 2019 Time: 10:29 am

review

Wild-type
virus

Wild-type
virus

Parental
cell

Persistent
Infection

Coevolution

“PI” virus

“PI”
virus

anti-reovirus
antiserum

Cured cell

Cured
cell

A B

Figure 2. Establishment of viral persistence and virus-cell coevolution. (A) Following infection with a wild-type virus, most cells are
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grid) and the virus as well so that it becomes a virus referred to
alanced situation with virus release and constant reinfection. Suc
ntiserum that blocks viral reinfection. (B) The original parental cell
irus recovered from persistently infected cells. In contrast, so-call
ime during viral persistence, are resistant to the parental wild-type

ion (required for the formation of mature cathepsins) and,
ore directly, to lysosomal protease inhibitors such as E64

33-37]. Virions of PI viruses are thus in a sense reminis-
ent of ISVPs. The X-ray crystal structure allows to localize
he amino acid substitutions on the �3 protein of different
nown PI viruses, as shown in figure 3. As discussed later
n, substitutions located on the �3 protein are also found
n PI viruses obtained from other cell lines. The molecu-
ar structure is available for the homodimer of �3, as well
s the �3-�1 heterohexamer, the major constituent of the
uter capsid, and was later refined by cryomicroscopy of the
irion [19-21]. These different substitutions are all located
n the small external lobe of the protein, and thus likely
o affect the proteolytic removal of �3 [10, 12, 38, 39].
hese substitutions are located at the surface of the protein
nd away from the contact zone between the two copies
f the molecule in its dimeric form. The substitutions are

lso away from the contact zone between �3 and �1 in the
eterohexameric complex at the virion’s surface.
ne can wonder why wild-type viruses have not acquired

his ability to more easily uncoat, that could be seen as
n advantage. In fact, such a virus is more pathogenic
nd is being transmitted more efficiently in an animal
odel [40]. It is, however, possible that an increased

E8
e persistently infected (in green). Eventually, the cell can evolve
he persistent infection virus (PI virus) (in black). This results in a
lls can be “cured” from their infection by addition of a neutralizing
be infected and destroyed with either the wild-type virus or the PI

ured” cells, that were in contact with the virus for a long period of
s, but are sensitive to the PI virus.

pathogenicity is actually harmful for the virus on the long-
term; alternatively, it is also possible that the transmission
assay used does not exactly reflect the negative impact of
decreased virion stability in the environment. Neverthe-
less, more detailed studies of reovirus strains in natural
situations seem necessary to better understand if such
mutations arise or not, and are maintained or not, under
such conditions.
The exact role of the �1 substitutions in these viruses
remains elusive; it was suggested that they can affect the
stability of the complex formed by three copies of the pro-
tein [41] but the precise impact was not further studied. The
determination of the structure of the protein [42, 43] now
allows us to locate more precisely the substitutions, con-
firming their localization in the helical region of the protein
(figure 4) unambiguously allowing to affirm that they exert
an effect on the stability of the protein [42]. It should also be

mentioned that some of the mutations overlap the open read-
ing frame for the small �1s protein, encoded by the same
S1 gene; it is thus difficult to affirm that the phenotype is
really due to changes on �1. The advent of reverse genetics
could probably lead to a further understanding of the impor-
tance of these various substitutions. Interestingly, in two
other different cell types, persistence is also accompanied

Virologie, Vol 23, n◦ 5, septembre-octobre 2019
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Figure 4. Position of amino acids substitutions on the �1 pro-
tein. The crystal structure of the trimer form of the �1 protein is
shown (PDB:6GAP) [42]. The amino acids substituted on various
PI viruses are indicated as red spheres, the substitution shown as

V

igure 3. Position of amino acids substitutions on the �3 pro-
ein. (A) The crystal structure of the dimer form of the �3 protein
in green and cyan) (PDB: 1FN9) is shown [19]. (B) The hetero-
examer made of three molecules of the �3 protein (cyan) at the
urface of the virion, on top of three molecules of the �1 protein
light brown) (PDB:1JMU) is shown [20]. Amino acids substituted in
arious PI viruses are indicated as red spheres on the �3 structure.

irologie, Vol 23, n◦ 5, septembre-octobre 2019
important on the PI virus recovered from Vero cells (VeroAV) is indi-
cated. The first 26 and the last 215 amino acids, encompassing the
globular portion of the protein, are absent from the structure pre-
sented (dashed lines). The blue arrow points toward the position at
the end of the truncated form observed on the PI virus recovered
from human fibrosarcoma cells HT1080. The position of the region
involved in binding to sialic acids [43] is also indicated (green dash).

by changes in �1 (or �1s). This aspect will be discussed in
a subsequent section.

The Vero cell situation

In the last few years, our laboratory has characterized in
detail a virus obtained following reovirus persistence in
Vero cells. These cells were chosen since they apparently
possess a limited ability to uncoat the virus [14], raising
the hypothesis that adaptation could occur by a mech-
anism other than modification of uncoating. These cells
also exhibit well-known defects in the antiviral interferon
production and interferon-induced, double-stranded-RNA-
dependent, protein kinase (PKR) [44-47]. The genome
sequence of the PI virus obtained named Vero-cell-adapted
virus (VeroAV) was completely determined and revealed

amino acids substitutions in four of the eleven translation
products of the ten viral genes [8]. The use of the reverse
genetics system then allowed us to demonstrate that the
single amino acid substitution N198K in �1 is responsible
for adapting the virus to Vero cells by increasing its bind-
ing to sialic acids (figure 4) [9]. Interestingly, in this case,
there was no change in �3 nor in viral uncoating in itself. In
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ddition, the �1 protein simultaneously co-evolved, which
pparently renders it more compatible with the modified
1. Interestingly, the N198K substitution in �1 appeared
rst during persistence establishment; this suggests that it

s actually the critical determinant of adaptation to Vero
ells, the other substitution (Q78P) appearing later on. The
utation in the �1-encoding gene also results in a single

mino acid substitution in a second protein (�1s), a small
rotein found in a different but overlapping reading frame
n the same gene [8]. As discussed below, this substitution
s an important determinant of interferon sensitivity.
s substitutions at the level of �1 appeared, other changes
n �1 also appeared. These substitutions (E89G and
114 V) are likely responsible for faster disassembly of

he virion [9, 48]. However, again, these changes may not
e desirable under natural conditions since they will result
n an increased sensitivity to proteases in the gastrointesti-
al tract [9, 48]. To date, this is the only known example
f a modification on �1 in the context of viral persistence.
tudies presently undergoing in the laboratory intend to
etter understand the significance, or not, of each of these
ubstitutions [49]. Interestingly, one of these (E89G) has
een independently examined by another group in the
ourse of their studies of the loop formed by region 72-96 of
he protein [50]. A substitution of amino acid 89 resulted in
small plaque phenotype in the presence of chymotrypsin, a
henotype that was also observed in our own studies [9, 48],
espite the different genetic background of the virus used in
hese different studies. Similarly, while coevolution (or co-
daptation) of �1 and �1 was observed and is essential on
eroAV [9], subsequent works also indicated an effect of �1
n the infectivity phenotype attributed to �1. This under-
ines the importance of compatibility between these two
roteins [51-53]. These observations are also in accordance
ith previous studies showing a role of �1 on different phe-
otypes attributed to the S1 gene [54-58], although some
f these may depend on the second reading frame encoding
1s. Despite the lack of direct physical interaction between

he two proteins, �1 and �1, an indirect effect on the struc-
ure of the viral particle could affect anchoring or exposure
f �1 at the surface of the viral particle [48].

ther cellular models
n addition to L929 cells, another murine fibroblast cell line
as been studied for the ability of reovirus to establish per-
istent infection. These cells, the murine feral embryonic
broblasts cell line, SC1, were initially chosen because they
xhibit reduced host-cell protein synthesis inhibition and
elayed killing upon infection [59]. When they are infected
ith a wild-type reovirus stock, a higher percentage of

E10
the cells can survive, compared to the situation observed
with L929 cells. Consequently, persistence is more readily
established but the phenomenon of host-cell coevolution
can nevertheless be observed. Although, the exact cellular
changes were not examined, cured cells could be obtained
and they similarly exhibit resistance to wild-type virus and
sensitivity to the PI virus recovered from these cells (unpub-
lished data). Partial sequencing of the PI virus revealed an
amino acid substitution at a different position on �3 but
close to those previously observed on PI viruses obtained
from L929 cells [48] (figure 3); it turned out that the
virus was also more resistant to the presence of uncoating
inhibitors (unpublished data).
Various human cell types have also been examined such as
lymphocytic cell lines Raji and CA46 as well as fibrosar-
coma cells HT1080 [60-62]. An altered �3, potentially
resulting in a facilitated cleavage of the protein, is also
selected in these cells (figure 3), but not always exclu-
sively. In at least one case a truncated version of �1 was
also found (figure 4). This again underlines the importance
of the two proteins �3 and �1, two critical proteins du-
ring virus entry in the host cell. Again, in all these cases,
the complete sequence of the virus was not reported, thus
complicating the interpretation.
A last case of viral persistence is in the CHO cell line
(chinese hamster ovary cells) with selection of adapted PI
virus and host-cell coevolution similar to the L929 cells
situation [63]. These studies were not pursued for further
characterization of the viruses and cells obtained. These
results are also somewhat surprising, since later works
have shown that these cells are poorly infected, due to
the lack of protein receptor for the virus [64, 65]. Again,
a difference in the exact nature of the cell lines used in
these different studies likely explain these differences. It
remains that the general principle of virus-cell coevolution
also applies to this cell line.

The role of interferon in viral
persistence

The role of the host-cell interferon response in reovirus
persistence remains unclear. In SC1 cells, viral persistence
was found to be associated with constant interferon secre-
tion and activation of PKR [66, 67]. However, in these cells,

interferon is not protective and this aspect has not been stu-
died in other persistently infected cell lines. Viral persis-
tence was also established in Vero cells that are deficient
for interferon synthesis, the initial hypothesis was that this
should allow virus evolution, independently of the con-
straint to maintain a certain level of resistance to interferon.
As a result, it was expected that the resulting virus would be

Virologie, Vol 23, n◦ 5, septembre-octobre 2019
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ore sensitive to interferon and this was actually the case.
he small nonstructural S1-encoded �1s turned out to be a
ew determinant of viral sensitivity to interferon, indepen-
ently of an effect on induction of interferon synthesis or
elease [8].

ther reflexions on the mechanisms
f reovirus persistent infection

he establishment of viral persistence is facilitated when
attenuated” viruses or experimental conditions limi-
ing viral replication, such as the addition of uncoating
nhibitors, are used and the events related to viral entry
re most important. Persistence establishment is also facili-
ated by using thermosensitive viruses or conditions where

constellation of mutant viruses are present from the
eginning, for example by using high-passage virus stocks
31, 48, 68-71].
s for many eucaryotic viruses, the exact mechanism(s)

eading to cell lysis remain(s) elusive and may involve more
han one step of the viral multiplication cycle. Certain cell
ypes are also known to be permissive for reovirus replica-
ion while remaining viable and releasing infectious virus.
his was observed in the case of a bat cell line [22] as well as

n endothelial and epithelial cells [2, 3]. The use of a vesicu-
ar transport mechanism cannot be excluded as a mechanism
or this release without lysis, especially considering recent
bservations showing remodelling of internal cellular mem-
ranes at the level of viral factories in cells infected by
eovirus [72]. Another possibility is that reovirus can exploit
he autophagic machinery. In the last few years, examples
ave been accumulating concerning the use of autophagy
y viruses, cytolytic or not, for their assembly or release
rom infected cells [73-77]. More recently, the participa-
ion of autophagy in the reovirus oncolytic activity, at least
n some cell types, has also been reported [78, 79]. It is thus
ossible that such a transport by the autophagic machinery
ould be exploited by reovirus for a non-cytolytic release,
s happens from persistently infected cells. In fact, elec-
ron microscopic examination of persistently infected cells
as shown the presence of viral particles in vesicles, some
f them morphologically reminiscent of autophagosomes
17, 23, 29, 66]. However, the exact nature of these vesicles
as not been clearly established. A permanent activation

f PKR in reovirus persistence has also been previously
oticed [66]; such a PKR activity could lead to increased
utophagy [80], thus contributing to viral release indepen-
ently of cell lysis.
n all described examples, reovirus persistent infection
equires a constant viral reinfection. This implies that the
irus achieves a complete replication cycle and that released

irologie, Vol 23, n◦ 5, septembre-octobre 2019
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virions are infectious. It explains that upon an exposure for
a relatively long time to neutralizing antibodies, cells are
cured to an undetectable level of viral production, while the
removal of the antibody does not lead to a rebound of viral
production.
Earlier works suggested a model of viral persistence in
which establishment and maintenance are two distinct
phenomena relying on different and stepwise genetic alter-
ations on PI viruses. In the first model, changes on �3 were
considered as essential to the establishment of persistence,
as discussed in the above sections. In contrast, maintenance
seemed to rely more on changes at the level of the �1 protein
[32, 71]. It should be mentioned that some of these studies
suggested that �2 could be involved in the establishment of
viral persistence by increasing the frequency of mutations
in the viral population used for the infection leading
to persistence [71]. Although the abundant presence of
mutations in the viral population could certainly contribute
to the establishment of persistence, a role for the �2 protein
seems unlikely; the idea that this protein could act as
the viral polymerase is not compatible with our current
knowledge on the transcription and replication of the viral
genome [11].
In the Vero cells model the amino acid substitution on �1
allowing adaptation of the virus to the cells, first appears
during the establishment of persistence. Later, the change
on �1s responsible for interferon sensitivity and the changes
to �1 will appear [48]. It is thus likely that the changes
described as responsible for “maintenance” are less directly
involved in persistence as such but are rather an indirect
consequence of viral growth for an extended period of time
in a given cell type. The order and the nature of the changes
observed in L929 and Vero cells are summarized schema-
tically in figure 5.

In vivo importance

Few studies have addressed reovirus persistence in vivo. In
the past, the presence of mutant viruses selected in vivo was
shown. It also appeared that hybridoma cells obtained fol-
lowing viral inoculation are sometimes persistently infected
and can be cured in vitro by neutralizing antiserum treat-
ment [81, 82]. These different PI viruses were not further
studied.

From another point of view, inoculation of PI viruses reco-
vered from L929 cells seemed to indicate an increased
virulence of these viruses, at least by intracerebral ino-
culation [83, 84]. Finally, tumour cell lines cured from per-
sistent infection in vitro remained sensitive to the wild-type
virus in the context of tumours in vivo, even though they
are in fact resistant in vitro, whereas persistently-infected
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he helical region (in red) of the �1 host-cell binding protein will then
n binding to sialic acids on the �1 protein (in red) (1) followed by a
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ells are unable to form tumours under these conditions
60, 61]. Clearly, these different aspects of in vivo persis-
ence deserve further studies.

iral persistence as a tool
o select new reoviruses

he in vitro evolution or adaptation of viruses to a given
ell type is not only very informative from a fundamental
oint of view but represents a potential tool to produce new
iruses. The selection or construction of new reoviruses
etter adapted as virotherapeutic agents, gene vectors, vac-
ines, or oncolytic viruses, has been proposed by many
uthors [6, 7, 26, 62, 58-89]. In the context of viral persis-
ence, one example of a PI virus selected on a tumour cell
ine was shown to be attenuated on normal cells without
ltering its infectivity or cytolytic potential on transformed
ells [62]. In this particular case, a deletion of a part of the �1
rotein was observed rather than amino acids substitutions.
erial passage or the selection of viral clones are two pos-

ible approaches to select new viruses harbouring useful
henotypes [26, 89, 90]. However, the long-term interaction
eeded to establish and maintain persistence represents an
mpressive number of viral cycles that cannot be readily
chieved otherwise by these other approaches. Further-
ore, the development of cellular resistance is likely a

river of viral evolution in this context, compared to serial

E12
e of persistence. (A) In L929 cells, changes to the external domain
l to the establishment of viral persistence (1). Additional changes in
r (2). (B) In Vero cells, the first changes occur in the region involved
onal changes (in red) on both �1 and �1 on the heterohexamer of

passage, although this last approach probably results in a
different type of selective pressure.
Obtaining PI viruses from different cell types, coupled with
genome sequencing of these viruses and confirmation of the
importance of various substitutions using reverse genetics,
could lead to a better understanding of the persistence phe-
nomena and virus-cell coevolution. It will certainly be of
interest to obtain viruses at different times during the esta-
blishment of persistence to better determine the nature of
the changes that are directly related and the phenomenon
of coevolution in various cellular contexts.

Conclusions

Despite the fact that reovirus persistence was described
more than 40 years ago, the study of underlying me-
chanisms remains pertinent. First of all, such studies could
allow a better fundamental understanding of virus biology
in various cell types. Secondly, these studies could lead,
on a longer term, to the identification of new viral vari-

ants that could be used in anticancer virotherapy or in other
applications.
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