JLE

Sang Thrombose Vaisseaux

MENU

Myocardial ischemic memory: why and how to investigate it? Insights from nuclear medicine Volume 30, issue 6, November-December 2018

  • [1] Neumann F.J., Sousa-Uva M., Ahlsson A. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2018. 10.1093/eurheartj/ehy394 [Epub ahead of print]
  • [2] CADTH. High-sensitivity cardiac troponin for the rapid diagnosis of acute coronary syndrome in the emergency department: a clinical and cost-effectiveness evaluation. CADTH optimal use reports. Ottawa (ON): Canadian agency for drugs and technologies in health; 2013.
  • [3] Gaemperli O., Lüscher T.F., Bax J.J. View point: what should the future design of clinical imaging studies be? Eur Heart J. 2013;34:2432-2435.
  • [4] Porter T.R. Cardiovascular imaging of remote myocardial ischemia: detecting a molecular trace of evidence left behind. Circulation. 2007;115:292-293. 3
  • [5] Davidson B.P., Kaufmann B.A., Belcik J.T., Xie A., Qi Y., Lindner J.R. Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol. 2012;60:1690-1697. 17
  • [6] Kaufmann B.A., Lewis C., Xie A., Mirza-Mohd A., Lindner J.R. Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J. 2007;28:2011-2017. 16
  • [7] Jaswal J.S., Keung W., Wang W., Ussher J.R., Lopaschuk G.D. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta. 2011;1813:1333-1350. 7
  • [8] Ma Y., Li J. Metabolic shifts during aging and pathology. Compr Physiol. 2015;5:667-686. 2
  • [9] Schwaiger M., Schelbert H.R., Keen R. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium. J Am Coll Cardiol. 1985;6:311-320. 2
  • [10] Hosokawa R., Nohara R., Fujibayashi Y. Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med. 1997;38:1857-1863. 12
  • [11] Kawai Y., Tsukamoto E., Nozaki Y., Morita K., Sakurai M., Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol. 2001;38:1888-1894. 7
  • [12] Dilsizian V., Bateman T.M., Bergmann S.R. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation. 2005;112:2169-2174. 14
  • [13] Kontos M.C., Dilsizian V., Weiland F. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes: a multicenter trial. J Am Coll Cardiol. 2010;56:290-299. 4
  • [14] Nguyêñ V.T., Mossberg K.A., Tewson T.J. Temporal analysis of myocardial glucose metabolism by 2-[18F]fluoro-2-deoxy-D-glucose. Am J Physiol. 1990;259:H1022-H1031. 4 Pt 2
  • [15] Araujo L.I., Camici P., Spinks T.J., Jones T., Maseri A. Abnormalities in myocardial metabolism in patients with unstable angina as assessed by positron emission tomography. Cardiovasc Drugs Ther. 1988;2:41-46. 1
  • [16] He Z.X., Shi R.F., Wu Y.J. Direct imaging of exercise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation. 2003;108:1208-1213. 10
  • [17] Arun S., Mittal B.R., Bhattacharya A., Rohit M.K. Comparison of Tc-99m tetrofosmin myocardial perfusion scintigraphy and exercise F18-FDG imaging in detection of myocardial ischemia in patients with coronary artery disease. J Nucl Cardiol. 2015;22:98-110. 1
  • [18] Dou K.F., Yang M.F., Yang Y.J., Jain D., He Z.X. Myocardial 18F-FDG uptake after exercise-induced myocardial ischemia in patients with coronary artery disease. J Nucl Med. 2008;49:1986-1991. 12
  • [19] Abbott B.G., Liu Y.H., Arrighi J.A. [18F]Fluorodeoxyglucose as a memory marker of transient myocardial ischaemia. Nucl Med Commun. 2007;28:89-94. 2
  • [20] Harisankar C.N., Mittal B.R., Agrawal K.L., Abrar M.L., Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18:926-936. 5
  • [21] Dae M.W., O’Connell J.W., Botvinick E.H. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989;79:634-644. 3
  • [22] Dae M.W., O’Connell J.W., Botvinick E.H., Chin M.C. Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovasc Res. 1995;30:270-280. 2
  • [23] Nakajima K., Shuke N., Nitta Y. Comparison of 99Tcm-pyrophosphate, 201T1 perfusion, 123I-labelled methyl-branched fatty acid and sympathetic imaging in acute coronary syndrome. Nucl Med Commun. 1995;16:494-503. 6
  • [24] Matsunari I., Schricke U., Bengel F.M. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation. 2000;101:2579-2585. 22
  • [25] Bevilacqua M.P., Nelson R.M. Selectins. J Clin Invest. 1993;91:379-387. 2
  • [26] McEver R.P. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14:581-586. 5
  • [27] Kansas G.S. Selectins and their ligands: current concepts and controversies. Blood. 1996;88:3259-3287. 9
  • [28] Collard C.D., Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133-1138. 6
  • [29] Tardif J.C., Tanguay J.F., Wright S.R. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61:2048-2055. 20
  • [30] Rouzet F., Michel J.B., Chaubet F., Azzouna R.B., Letourneur D., Le Guludec D. Molecular imaging of selectins in endothelial activation. Curr Cardiovasc Imaging Rep. 2012;5:199-202.
  • [31] Blann A.D., Nadar S.K., Lip G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24:2166-2179. 24
  • [32] Bachelet L., Bertholon I., Lavigne D. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim Biophys Acta. 2009;1790:141-146. 2
  • [33] Rouzet F., Bachelet-Violette L., Alsac J.M. Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J Nucl Med. 2011;52:1433-1440. 9
  • [34] Saboural P., Chaubet F., Rouzet F. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs. 2014;12:4851-4867. 9
  • [35] van Kasteren S.I., Campbell S.J., Serres S., Anthony D.C., Sibson N.R., Davis B.G. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A. 2009;106:18-23. 1