John Libbey Eurotext

Environnement, Risques & Santé

MENU

Emissions related to the operation of 3D printers Volume 17, issue 5, September-October 2018

  • [1] ALL3DP. The official history of the RepRap project. ALL3DP, 2016. https://all3dp.com/history-of-the-reprap-project/
  • [2] Fischer T. A real industrial revolution: 3D printing and the impact on jobs. History, future now, 2012. http://www.historyfuturenow.com/wp/a-real-industrial-revolution-3d-printing-and-the-impact-on-jobs-2/
  • [3] Stephens B., Azimi P., El Orch Z., Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmos Environ. 2013;79:334-339. 4
  • [4] Obaton A.N., Bernard A., Taillandier G., Moschetta J.M. Additive manufacturing: state of the art and generated metrological needs. Rev Fr Metr. 2015;2015:21-36. 1
  • [5] Dodziuk H. Applications of 3D printing in healthcare. Pol J Thorac Cardiovasc Surg. 2016;13:283-293. 3
  • [6] Velasquillo C., Galue E.A., Rodriquez L., Ibarra C., Ibarra-Ibarra L.G. Skin 3D bioprinting. Applications in cosmetology. JCDSA. 2013;3:85-89.
  • [7] Stratasys. Impression 3D pour l’industrie aéronautique. Stratasys, 2015. http://www.stratasys.com/fr/secteurs/aerospatiale-defense/airbus
  • [8] Azimi P., Zhao D., Pouzet C., Crain N.E., Stephens B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 2016;50:1260-1268.
  • [9] Yi J., LeBouf R.F., Duling M.G. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol Environ Health. 2016;79:453-465.
  • [10] Zontek T.L., Ogle B.R., Jankovic J.T., Hollenbeck S.M. An exposure assessment of desktop 3D printing. J Chem Health Saf. 2017;24:15-25.
  • [11] Dul S., Fambri L., Pegoretti A. Fused deposition modelling with ABS-graphene nanocomposites. J Compositesa. 2016;85:181-191. 2016
  • [12] Tsiakatouras G., Tsellou E., Stergiou C. Comparative study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts. World Trans Eng Technol Educ. 2014;12:392-396.
  • [13] De Leon A.C., Chen Q., Palaganas N.B., Palaganas J.O., Manapat J., Advincula R.C. High performance polymer nanocomposites for additive manufacturing applications. J React Funct Polym. 2016;103:141-155. 2016
  • [14] Nano Dimension. High performance materials, dielectric inks and nano particle conductive inks engineered for printed electronics. Nano-dimension. http://www.nano-di.com/conductive-inks
  • [15] Afshar-Mohajer N., Wu C.Y., Ladun T., Rajon D.A. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. J Build Environ. 2015;93:293-301. 2015
  • [16] Deng Y., Cao S.J., Chen A., Guo Y. The impact of manufacturing parameters on submicron particle emission from a desktop 3D printer in the perspective of emission reduction. J Build Environ. 2016;104:311-319. 2016
  • [17] Pirela S.V., Pyrgiotakis G., Bello D., Thomas T., Castranova V., Demokritou P. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Inhal Toxicol. 2014;26:400-408. 7
  • [18] Kim Y., Yoon C., Ham S. Emissions of nanoparticles and gaseous material from 3D printer operation. Environ Sci Technol. 2015;49:12044-12053.
  • [19] Anses. Valeurs guides de qualité d’air intérieur (VGAI). Anses, 2014.
  • [20] HCSP. Valeurs repères d’aide à la gestion pour les particules dans l’air intérieur. HCSP, 2013. http://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=371