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ABSTRACT – Aims. Somatic mutation of the lissencephaly-1 gene is a cause
of subcortical band heterotopia (“double cortex”). The severity of the
phenotype depends on the level of mutation in brain tissue. Detecting
and quantifying low-level somatic mosaic mutations is challenging. Here,
we utilized droplet digital PCR, a sensitive method to detect low-level
mutation.
Methods. Droplet digital PCR was used in concert with classic genotyping
techniques (SNaPshot assays and pyrosequencing) to detect and character-
ize the tissue mosaicism of a somatic mutation (LIS1 c.190A>T; p.K64X) in a
patient with posterior bilateral SBH and refractory epilepsy.
Results. The high sensitivity of droplet digital PCR and the ability to target
individual DNA molecules allowed us to detect the mutation at low level in
the brain, despite the low quality of the DNA sample derived from formalin-
fixed paraffin-embedded tissue. This low mutation frequency in the brain
was consistent with the relatively subtle malformation resolved by magnetic
resonance imaging. The presence of the mutation in other tissues from the
patient permitted us to predict the timing of mutagenesis.
Conclusion. This sensitive methodology will have utility for a variety of
other brain malformation syndromes associated with epilepsy for which
historical pathological specimens are available and specific somatic mosaic
mutations are predicted.

Key words: LIS1 gene, somatic mosaic mutation, subcortical band hetero-
topia, Double Cortex
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he most frequent recognized cause of subcortical
and heterotopia (SBH) is mutation of the dou-
lecortin gene (DCX), which gives rise to an X-linked
ominant disorder presenting in females (Gleeson
t al., 1998). Rarely, somatic mosaic mutations in the

issencephaly-1 gene (LIS1; also known as PAFAH1B1),
ffecting only a portion of migrating neurons in the
rain, manifest in a “double cortex” pattern of SBH

Jamuar et al., 2014; Mineyko et al., 2010; Pilz et al., 1999;
icca et al., 2003; Uyanik et al., 2007). Such mutations
re estimated to account for 5 to 10% of lissencephaly
ases (reviewed in Poduri et al. 2013).
ere, we utilized a sensitive assay to investigate a LIS1
utation (p.K64X) in a patient with SBH and detect

t for the first time in brain tissue, confirming the
iagnosis. Using the droplet digital PCR (ddPCR) tech-
ique, and two other classic molecular approaches, we
lso predicted the timing of mutagenesis to be very
arly during development based on detection of the
osaic mutation in other tissues, a finding consistent
ith the “double cortex” pattern. We show that the
dPCR technique is powerful for identifying low-level
omatic mosaic mutations that cause brain malfor-
ations when historical pathological specimens are

vailable.

aterials and methods

linical subject

e studied a patient with refractory focal epilepsy
ssociated with mild intellectual disability and delayed
peech. Genomic DNA was extracted from blood
sing the Qiagen QIAamp DNA Maxi Kit (Hilden,
ermany). Saliva was obtained using the Oragene
it and genomic DNA was extracted using the
repIT�L2P kit (DNA Genotek Inc, Ontario, Canada).
or formalin-fixed paraffin-embedded (FFPE) brain
issue, phenol-chloroform extraction or the Qiagen
FPE Tissue Kit was used. The Human Research
thics Committee of Austin Health, Melbourne, Aus-
ralia, approved this study (Project No. H2007/02961).
nformed consent was obtained from the participant
or involvement in the study and the use of clinical
nformation and images. All experiments were per-
ormed in accordance with the relevant guidelines and
egulations of this committee.
pileptic Disord, Vol. 19, No. 4, December 2017

roplet digital PCR

e designed custom probes (WT: VIC-ATTA-
AAAAGAAGGTAACTAA-MGB-NFQ and K64X:

AM-ATTACAAAAGTAGGTAACTAA-MGB-NFQ) and
rimers (LIS1.2 FWD-BIOT 5’-TGGAAAAAAAATGGA-

T
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a
w
v
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ATCTGTTA and LIS1.2 REV 5’-TGCA GAAGAATGT-
ATTTTCAGAA) to detect the LIS1 c.190A>T (p.K64X)
utation and wild-type allele. Droplet generation,

CR cycling, and droplet reading were performed
ccording to the manufacturer’s recommendations
Bio-Rad, Hercules, CA). Briefly, probes and primers
ere mixed with 2x ddPCR Supermix for probe (Bio-
ad) at 217 nM and 435 nM final concentrations for
ach probe and each of the primers, respectively, and
ixed with 10 ng of DNA sample to a final volume

f 23 �l. In total, 20 �l of reactions were loaded in
n 8-channel droplet generator cartridge (Bio-Rad)
nd droplets were generated with 70 �l of droplet
eneration oil (Bio-Rad) by using the manual QX200
roplet Generator. Following droplet generation,

amples were manually transferred to a 96-well PCR
late, heat-sealed, and amplified on a C1000 Touch

hermal cycler using the following cycling conditions:
5◦C for 10 minutes for one cycle, followed by 40
ycles at 94◦C for 30 seconds and 55◦C for 60 seconds,
ne cycle at 98◦C for 10 minutes, and 12◦C for an
nlimited period. Post-PCR products were read on the
X200 droplet reader (Bio-Rad) and analysed using

he QuantaSoft software.

NaPshot and pyrosequencing assays

he p.K64X mutation was PCR amplified using specific
rimers to the third coding exon of the LIS1 gene using

he reference human gene transcript (RefSeq tran-
cript NM_000430). The standard protocol on a Veriti
hermal cycler (Applied Biosystems, Carlsbad, CA) was
sed for PCR amplification. PCR products were used

or SNaPshot and pyrosequencing assays as follows.
or SNaPshot, PCR products were purified using
xonuclease I (2 units) and shrimp alkaline phos-
hatase (5 units) (EXOSAP) treatment. Reactions were

hen set up using Multiplex Ready Reaction Mix
nd pooled control and sample PCR products and
rimers, and thermal cycling completed on a Ver-

ti Thermal Cycler according to the manufacturer’s
nstructions. SNaPshot products were then subjected
o post-extension EXOSAP and resolved on a 3730xl
NA Analyzer (Applied Biosystems).

or pyrosequencing, PyroMark Gold Q96
QA Reagents (Qiagen) and custom biotin-5’

abelled forward primer (LIS1.2 FWD-BIOT 5’-
GGAAAAAAAATGGACATCTGT TA), reverse primer
LIS1.2 REV 5’-TGCAGAAGAATGTTATTTTCAGAA), and
451

equencing primer (5’-AAAGAAAAAAGACTTAGTTA)
ere used on a PyroMark Q96 instrument (Qiagen)

ccording to the manufacturer’s instructions. Data
ere analysed with Pyro Q-CpG software (Qiagen,

ersion 1.0.9), as previously described (Lim et al., 2014).
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igure 1. LIS1 mutation detected by ddPCR in an Australian pati
atient showing a coronal view of normal cortex (black arrow

B) ddPCR read-out showing droplets positive (blue) for K64X mut
ositive for wild-type probe are green and droplets without DNA
TC: no template control; 7354-5: saliva; ANON34: healthy contro

n duplicate.

esults

linical report

he 40-year-old patient had multiple febrile seizures
etween 2 and 4 years of age. She had delayed speech
nd mild intellectual impairment. At age 7 years, focal
eizures began, characterized by an aura of fear, fol-
owed by loss of awareness and bilateral dystonic
osturing. Seizures occurred in clusters and some-

imes evolved to bilateral convulsive seizures. She did
ot respond to antiepileptic drugs and video-EEG mon-

toring at age 14, in 1991, suggested a left temporal
nset. MRI at that time, using a 0.3T instrument, was
egarded as normal and she underwent a standard left
nterior temporal lobectomy. Histopathological exam-
nation of the left temporal lobe, hippocampus, and
ncus specimens collected at surgery revealed cere-
ral neocortex, white matter, and periventricular grey
atter. There was mild molecular layer gliosis but

o evidence of hippocampal sclerosis or dysplastic
52

ortex. Seizures did not improve post-surgery. Rein-
estigation revealed independent bilateral posterior
uadrant seizures and 1.5T MRI (figure 1A) revealed
ilateral posterior SBH. Clusters of focal seizures con-

inued into her forties despite multiple combinations
f antiepileptic drugs.

(
a
d
T
N
b

ith “double cortex” syndrome. (A) Brain MRI of the Australian
bilateral posterior subcortical band heterotopia (red arrow).

robe in brain- and saliva-derived DNA from the patient. Droplets
plate are grey.
od-derived DNA; 7354-12: temporal lobe-derived brain DNA run

utation detection by droplet digital PCR

dPCR uses microfluidics and surfactant chemistries to
mulsify input DNA into thousands of uniformly-sized
roplets, and then amplify them with fluorescently

abelled TaqMan probes before measuring fluores-
ence on a droplet reader, as we and others have
reviously described (Oxnard et al., 2014; Tsao et al.,
015). Based on fluorescence intensity, the number of
utation positive and wild-type templates is quanti-

ed in order to calculate the frequency of a mutant
llele. While this approach is “site-specific”, relying
n prior knowledge of the precise mutation from
re-screening, it has the advantage of being highly
ensitive (down to 0.1% frequency) making it 10-fold
ore sensitive than sequencing (Abyzov et al., 2017).

he approach is highly suitable for old, degraded
NA from FFPE specimens because individual DNA
olecules can be investigated. For these reasons, it
as the method of choice for the patient studied here.
he patient’s formalin-fixed and paraffin-embedded
Epileptic Disord, Vol. 19, No. 4, December 2017

FFPE) surgical sample from 1991 was retrieved and
nalysed along with a saliva DNA sample. The brain-
erived DNA sample, extracted using the Qiagen FFPE
issue Kit, was of poor quality (260/280 ratio: 1.95; by
anodrop), produced a low yield (50 �l at 28 ng/�l
y Nanodrop), and was highly degraded given it was
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igure 2. LIS1 mutation detected by pyrosequencing using blood
ion of the mutant p.K64X allele in blood (A) and saliva (B), but no
n the shaded box. N.a.=no call.

btained and fixed over 25 years ago. Using sensitive
dPCR, the LIS1 p.K64X mutant allele was detected in
NA extracted from FFPE brain tissue using the Qia-
en FFPE Tissue Kit (∼5% mutant allele frequency) and
aliva using the prepIT�L2P kit kit (∼13% mutant allele
requency) (figure 1B). No copies of mutant template
ere detected in the healthy control blood-derived
NA extracted using the Qiagen QIAamp Maxi Kit

figure 1B).

olecular analyses of other tissues

e previously reported the LIS1 p.K64X mutation
n blood-derived DNA of the patient by subcloning
pileptic Disord, Vol. 19, No. 4, December 2017

Jamuar et al., 2014). This finding was confirmed
ere by SNaPshot and pyrosequencing assays (∼6%
utant allele frequency) (figure 2A). We were also

ble to detect mutant allele in saliva (∼13% mutant
llele frequency) at the same level as that achieved
y ddPCR, providing confirmation by an orthogonal
ethod (figure 2B). However, we failed to identify the

c
m
i
l
s
i
c

saliva-derived DNA. Pyrosequencing assay results show detec-
rain (C). The c.190 wild-type (A) and mutant (T) allele are shown

llele in phenol-chloroform-extracted brain-derived
NA by pyrosequencing (figure 2C). The presence of

he mutation in multiple tissues from different lineages
uggests that it arose very early post-zygotically, a phe-
omenon we have previously described for another
pilepsy syndrome (Vadlamudi et al., 2010).

iscussion

ur findings confirm that somatic LIS1 mutation is an
mportant cause of SBH and that such mutations can
e present at very low levels in brain tissue due to
osaicism. They may arise very early during develop-
ent, as suggested by their presence in two distinct
453

ellular lineages. Furthermore, these low-level somatic
osaic mutations have been challenging to detect

n FFPE tissue because the DNA quality is generally
ower than that from other tissue sources, and the
ample often contains more impurities due to the fix-
ng and embedding process which we have shown
an interfere with mutation detection methods (Do
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mutations in DCX (XLIS) or LIS1. Hum Mol Genet 1999; 8:
1757-60.

Poduri A, Evrony GD, Cai X, Walsh CA. Somatic muta-
.A. Damiano, et al.

nd Dobrovic, 2012, 2015). As such, the novelty of this
eport is not the discovery of the mutation itself, in light
f our previously published work (Jamuar et al., 2014),
ut rather the confirmation of the presence of the
utation in the brain by application of a new and highly

ensitive technique for low-frequency mutation detec-
ion, suitable for old and degraded brain tissue DNA.
his is important and timely for patients with brain mal-
ormations and epilepsy because much of the biobank
issue available at most clinical research centres is
till historical formalin-fixed, paraffin-embedded brain
pecimens, similar to that studied here. That these
istorical specimens can be successfully investigated

or mutation, even when traditional approaches have
ailed, is important for future investigation of somatic

utation.
he mutation was not detectable in the archival
rain tissue by conventional approaches, such as
NaPshot or pyrosequencing using traditional phenol-
hloroform extraction. A ∼5% frequency for the
ormer approach is below the threshold of detection,
nd for the latter, the poor quality of the FFPE-
erived brain DNA sample likely impeded detection.
espite these significant limitations, ddPCR was sen-

itive enough to detect the low level mutant allele in
he brain sample. The use of the Qiagen FFPE Tissue
it is also likely to have helped overcome these chal-

enges. Together, these approaches are important tools
o maximise detection of mutant allele signal from
oor quality DNA samples.
he low-level somatic mosaic LIS1 mutation reported
ere in brain is consistent with the clinical presentation
nd imaging findings of the patient. Patients heterozy-
ous for LIS1 mutation have the much more severe
efect of lissencephaly, presumably a consequence of
ll neurons expressing the mutant allele, leading to
more diffuse and severe neuronal migration defect

Gleeson et al., 1998). This methodology is likely to
ave significant utility for a variety of other brain
alformation syndromes associated with epilepsy for
hich there is prior knowledge of the somatic mosaic
utations involved from pre-screening, such as focal

ortical dysplasias, or for which there is a known recur-
ent mutation, such as in Sturge-Weber syndrome
Shirley et al., 2013). In addition, this methodology may
e used for important applications in situations where
vailable DNA templates for neurological diagnosis are
resent at low levels or are of poor quality, such as from
FPE tissue. �
54
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(1) Are somatic mutations inherited?
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(3) Is it possible to deduce the timing of mutagenesis base
origin?

Note: Reading the manuscript provides an answer to all q
website, www.epilepticdisorders.com, under the section
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d on the detection of mutations in tissues of different

uestions. Correct answers may be accessed on the
“The EpiCentre”.
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