JLE

Epileptic Disorders

MENU

Seizure-induced hippocampal damage in the mature and immature brain Volume 4, issue 2, June 2002

1. Liu Z, Mikati M, Holmes G. Mesial temporal sclerosis: pathogenesis and significance. Pediat Neurol 1995; 12: 5-16.

2. Dam AM. Epilepsy and neuron loss in the hippocampus. Epilepsia 1980; 21: 617-29.

3. Bratz E. Ammonshornbefunde bei epileptikern. Arch Psychia-tri Nervenkr 1899; 32: 820-35.

4. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964; 10: 233-48.

5. Fisher PD, Sperber EF, Moshé SL. Hippocampal sclerosis revisited. Brain Dev 1998; 20: 563-73.

6. Berg AT, Shinnar S, Levy SR, et al. Childhood-onset epilepsy with and without preceding febrile seizures. Neurology 1999; 53: 1742-8.

7. Hauser W. Incidence and prevalence. In: Engel J Jr., Pedley TA, Eds. Epilepsy: a Comprehensive Textbook. Philadelphia: Lippincott-Raven, 1997: 47-57.

8. Hauser WA. The natural history of febrile seizures. In: Nelson KB, Ellenberg JH, Ed. Febrile seizures. New York: Raven Press, 1981: 5-18.

9. Doose H. Myoclonic astatic epilepsy of early childhood. In: Roger J, Bureau M, Dravet C, Dreifuss FE, Perret A, Wolf P, ed. Epileptic Syndromes in Infancy, Childhood and Adolescence. London: John Libbey, 1992: 103-14.

10. Dravet C, Bureau M, Roger J. Severe myoclonic epilepsy in infants. In: Roger J, Bureau M, Dravet C, Dreifuss FE, Perret A, Wolf P, ed. Epileptic Syndromes in Infancy, Childhood and Adolescence. London: John Libbey, 1992: 75-88.

11. Braak H, Braak E, Yilmazer D, et al. Functional anatomy of human hippocampal formation and related structures [see comments]. J Child Neurol 1996; 11: 265-75.

12. Lorente de Nó R. Studies on the structure of the cerebral cortex II. Continuation of the study of the ammonic system. J Psychol Neurol 1934; 46: 113-77.

13. Johnston D, Amaral D. Hippocampus. In: Shepherd GM, Ed. The Synaptic Organization of the Brain, 4th Edition. New York: Oxford University Press, 1997: 417-58.

14. Gloor P. The temporal lobe and limbic system. New York: Oxford University Press, 1997.

15. Sutula T, Cascino G, Cavazos J, et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26: 321-30.

16. Soriano E, Frotscher M. Spiney nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. J Comp Neurol 1993; 333: 435-48.

17. Buckmaster PS, Wenzel HJ, Kunkel DD, et al. Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 1996; 366: 271-92.

18. Jackson MB, Scharfman HE. Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 1996; 76: 601-16.

19. Wenzel HJ, Woolley CS, Robbins CA, et al. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus 2000; 10: 244-60.

20. Acsady L, Kamondi A, Sik A, et al. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 1998; 18: 3386-403.

21. Wenzel HJ, Buckmaster PS, Anderson NL, et al. Ultra-structural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 1997; 7: 559-70.

22. Forti M, Michelson HB. Synaptic connectivity of distinct hilar interneuron subpopulations. J Neurophysiol 1998; 79: 3229-37.

23. Frotscher M, Zimmer J. Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus - a combined Golgi/EM degeneration study. Brain Res 1983; 265: 289-93.

24. Seress L, Ribak CE. Direct commissural connections to the basket cells of the hippocampal dentate gyrus: anatomical evidence for feed-forward inhibition. J Neurocytol 1984; 13: 215-25.

25. Scharfman HE. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 1995; 74: 179-94.

26. Michelson HB, Wong RK. Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J Physiol 1994; 477: 35-45.

27. Scharfman HE. The role of nonprincipal cells in dentate gyrus excitability and its relevance to animal models of epilepsy and temporal lobe epilepsy. Adv Neurol 1999; 79: 805-20.

28. Brown TH, Zador AM. Hippocampus. In: Shepherd GM, Ed. The Synaptic Organization of the Brain, 3rd edition. New York: Oxford University Press, 1990.

29. Margerison JH, Corsellis JA. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropatho-logical study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966; 89: 499-530.

30. Corsellis JAN, Bruton CJ. Neuropathology of status epilepticus in humans. In: Delgado-Escueta AV, Wasterlain CG, Treiman DM, Porter RJ, eds. Status Epilepicus. Mechanisms of Brain Damage and Treatment. New York: Raven Press, 1983: 129-39.

31. Bruton CJ. The neuropathology of temporal lobe epilepsy. Maudsley monographs; no. 31. New York: Oxford University Press, 1988.

32. Mathern G, Babb T, Armstrong D. Mesial temporal lobe epilepsy. In: Engel JJ, Pedley TA, eds. Epilepsy: a comprehensive Textbook. New York: Lippincott-Raven Publishers, 1997: 133-55.

33. Jackson GD, Chambers BR, Berkovic SF. Hippocampal sclerosis: development in adult life. Dev Neurosci 1999; 21: 207-14.

34. DeGiorgio CM, Tomiyasu U, Gott PS, et al. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 1992; 33: 23-7.

35. Salmenpera T, Kalviainen R, Partanen K, et al. MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 2000; 40: 155-70.

36. Fujikawa DG, Itabashi HH, Wu A, et al. Status epilepticus-induced neuronal loss in humans without systemic compli-cations or epilepsy. Epilepsia 2000; 41: 981-91.

37. Meldrum BS, Vigouroux RA, Brierley JB. Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol 1973; 29: 82-7.

38. Meldrum BS, Brierley JB. Prolonged epileptic seizures in primates: ischemic cell change and its relation to ictal physiological events. Arch Neurol 1973; 28: 10-7.

39. Nevander G, Ingvar M, Auer R, et al. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 1985; 19: 281-90.

40. Olney JW, deGubareff T, Sloviter RS. "Epileptic" brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathology. Brain Res Bull 1983; 10: 699-712.

41. Sloviter RS. "Epileptic" brain damage in rats induced by sustained electrical stimulation of the perforant path. I. acute electrophysiological and light microscopic studies. Brain Res Bull 1983; 10: 675-97.

42. Sloviter RS, Dean E, Sollas AL, et al. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 1996; 366: 516-33.

43. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci 1985; 14: 375-403.

44. Nadler JV. Mini-review; kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981; 29: 2031-42.

45. Nadler JV, Perry BW, Cotman CW. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978; 271: 676-7.

46. Lothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 1981; 218: 299-318.

47. Gruenthal M, Armstrong DR, Ault B, et al. Comparison of seizures and brain lesions produced by intracerebroventricular kainic aicd and bicuculline methiodide. Exper Neurol 1986; 93: 621-30.

48. Du F, Eid T, Lothman EW, et al. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci 1995; 15: 6301-13.

49. Cronin J, Dudek FE. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res 1988; 474: 181-4.

50. Cavalheiro LA, Riche DA, Le Gal La Salle G. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electro-enceph Clin Neurophysiol 1982; 53: 581-9.

51. Turski L, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats: a behavioural, electroence-phalographic and neuropathological study. Behav Brain Res 1983; 9: 315-35.

52. Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 1996; 725: 11-22.

53. Cavalheiro EA, Leite JP, Bartolotto Z, et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991; 32: 778-82.

54. Leite JP, Bortolotto AA, Cavalheiro EA. Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Behav Rev 1990; 14: 511-7.

55. Lothman EW, Bertram EH, Bekenstein JW, et al. Self-sustaining limbic status epilepticus induced by "continuous" hippocampal stimulation: electrographic and behavioral characteristics. Epilepsy Res 1989; 3: 107-19.

56. Lothman EW, Bertram EH, Kapur J, et al. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res 1990; 6: 110-8.

57. Kelsey JE, Sanderson KL, Frye CA. Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801. Behav Brain Res 2000; 107: 59-69.

58. Pereira de Vasconcelos A, Mazarati AM, Wasterlain CG, et al. Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path: a 2-deoxyglucose study. Brain Res 1999; 838: 110-8.

59. Mazarati AM, Wasterlain CG, Sankar R, et al. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res 1998; 801: 251-3.

60. Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 1990; 13: 312-8.

61. Represa A, Ben-Ari Y. Kindling is associated with the formation of novel mossy fibre synapses in the CA3 region. Exp Brain Res 1992; 92: 69-78.

62. Babb TL, Kupfer WR, Pretorius JK. Recurrent excitatory circuits by "sprouted" mossy fibers into the fascia dentata of human hippocampal epilepsy. Epilepsia 1988; 29: 674.

63. Sutula T, He XX, Cavazos J, et al. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988; 239: 1147-50.

64. Hauser WA. Status epilepticus: epidemiologic conside-rations. Neurology 1990; 40: 9-13.

65. Babb TL, Kupfer WR, Pretorius JK, et al. Synaptic reor-ganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991; 42: 351-63.

66. Houser CR, Miyashiro JE, Swartz BE, et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10: 267-82.

67. Cronin J, Obenaces A, Houser CR, et al. Electrophysiology of dentate granule cells after kainate-induced synaptic reor-ganization of the mossy fibers. Brain Res 1992; 573: 305-10.

68. Wuarin JP, Dudek FE. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 1996; 16: 4438-48.

69. Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 1999; 40: S34-9; discussion S40-31.

70. Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the "Dormant Basket Cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocam 1991; 1: 41-66.

71. Haas K, Sperber EF, Moshé SL, et al. Kainic acid induced seizures enhance dentate inhibition by down regulation of GABAB receptors. J Neurosci 1996; 16: 4250-60.

72. Longo BM, Mello LE. Blockade of pilocarpine- or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett 1997; 226: 163-6.

73. Longo BM, Mello LE. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kai-nate model of epilepsy in the rat. Epilepsy Res 1998; 32: 172-82.

74. Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 2001; 45: 237-52.

75. Kondratyev A, Gale K. Temporal and spatial patterns of DNA fragmentation following focally or systemically-evoked status epilepticus in rats. Neurosci Lett 2001; 310: 13-6.

76. Tuunanen J, Lukasiuk K, Halonen T, et al. Status epilepticus-induced neuronal damage in the rat amygdaloid complex: distribution, time-course and mechanisms. Neuroscience 1999; 94: 473-95.

77. Nevander G, Ingvar M, Auer R, et al. Irreversible neuronal damage after short periods of status epilepticus. Acta Physiol Scand 1984; 120: 155-7.

78. Lallement G, Carpentier P, Collet A, et al. Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 1991; 563: 234-40.

79. Minamoto Y, Itano T, Tokuda M, et al. In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amyg-daloid kindled rat. Brain Res 1992; 573: 345-8.

80. Millan MH, Chapman AG, Meldrum BS. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilep Res 1993; 14: 139-48.

81. Carlson H, Ronne EE, Ungerstedt U, et al. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neuroscience Lett 1992; 140: 30-2.

82. During MJ, Spencer DD. Extracellular hippocampal gluta-mate and spontaneous seizure in the conscious human brain [see comments]. Lancet 1993; 341: 1607-10.

83. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Eng J Med 1994; 330: 613-22.

84. Holscher C, Gigg J, O'Mara SM. Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neurosc Biobehav Rev 1999; 23: 399-410.

85. Bortoletto ZA, Fitzjohn SM, Collingridge GL. Roles of metabotropic glutamate receptors in LTP and LTD in hippo-campus. Curr Opin Neurobiol 1999; 9: 299-304.

86. Monoghan DT, Cotman CW. Distribution of N-methyl-D-aspartate-sensitive L-[3H] glutamate-binding sites in rat brain. J Neurosci 1985; 5: 2909-19.

87. Rothman SM, Olney JW. Excitotoxicity and NMDA receptor. Trends Neurosci 1987; 10: 299-302.

88. Koh JY, Goldberg MP, Hartley DM, et al. Non-NMDA-receptor-mediated neurotoxicity in cortical culture. J Neurosci 1987; 10: 693-705.

89. Roy M, Sapolsky R. Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci 1999; 22: 419-22.

90. Choi DW. Excitotoxic cell death. J Neurobiol 1992; 23: 1261-76.

91. Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl 1994; 43: 1-11.

92. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a biological phenomenon with ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57.

93. Kobayashi T, Mori Y. Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 1998; 363: 1-15.

94. Savitz SI, Rosenbaum DM. Apoptosis in neurological disease. Neurosurgery 1998; 42: 555-72.

95. Fujikawa DG, Shinmei SS, Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 2000; 41: S9-13.

96. Pal S, Sombati S, Limbrick DD, Jr., et al. In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res 1999; 851: 20-31.

97. Raza M, Pal S, Rafiq A, et al. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 2001; 903: 1-12.

98. Cavazos JE, Sutula TP. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 1990; 527: 1-6.

99. Cavazos JE, Das I, Sutula TP. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis. J Neurosci 1994; 14: 3106-21.

100. Tuunanen J, Pitkanen A. Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res 2000; 39: 171-6.

101. Kelly ME, McIntyre DC. Hippocampal kindling protects several structures from the neuronal damage resulting from kainic acid-induced status epilepticus. Brain Res 1994; 634: 245-56.

102. Berger ML, Lassmann H, Hornykiewicz O. Limbic seizures without brain damage after injection of low doses of kainic acid into the amygdala of freely moving rats. Brain Res 1989; 489: 261-72.

103. Scott BW, Wang S, Burnham WM, et al. Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci Lett 1998; 248: 73-6.

104. Parent JM, Janumpalli S, McNamara JO, et al. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett 1998; 247: 9-12.

105. Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 1998; 790: 52-9.

106. Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17: 3727-38.

107. Scott BW, Wojtowicz JM, Burnham WM. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 2000; 165: 231-6.

108. Madsen TM, Treschow A, Bengzon J, et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47: 1043-9.

109. Tada E, Parent JM, Lowenstein DH, et al. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 2000; 99: 33-41.

110. Parent JM, Tada E, Fike JR, et al. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 1999; 19: 4508-19.

111. Bradley C, Paige L, Chang D, et al. Electroconvulsive therapy (ECT)-induced seizures as a model system for human epilepsy studied by SPECT difference imaging. Epilepsia 2000; 41: 65.

112. Paige L, Bradley C, Chang D, et al. SPECT ictal-interictal difference imaging reveals thalamic and brainstem reticular formation involvement in seizures. Epilepsia 2000; 41: 68.

113. Bertram EH, Scott C. The pathological substrate of limbic epilepsy: neuronal loss in the medial dorsal thalamic nucleus as the consistent change. Epilepsia 2000; 41: S3-8.

114. Bertram EH, Mangan PS, Zhang D, et al. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia 2001; 42: 967-78.

115. Dragunow M, Robertson HA. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 1987; 329: 441-2.

116. Simonato M, Hosford DA, Labiner DM, et al. Differential ex-pression of immediate early genes in the hippocampus in the kind-ling model of epilepsy. Brain Res Mol Brain Res 1991; 11: 115-24.

117. Dragunow M, Robertson HA, Robertson GS. Amygdala kindling and c-fos protein(s). Exp Neurol 1988; 102: 261-3.

118. Clark M, Post RM, Weiss SR, et al. Regional expression of c-fos mRNA in rat brain during the evolution of amygdala-kindled seizures. Brain Res Mol Brain Res 1991; 11: 55-64.

119. Shin C, McNamara JO, Morgan JI, et al. Induction of c-fos mRNA expression by afterdischarge in the hippocampus of naive and kindled rats. J Neurochem 1990; 55: 1050-5.

120. Clark M, Post RM, Weiss SR, et al. Expression of c-fos mRNA in acute and kindled cocaine seizures in rats. Brain Res 1992; 582: 101-6.

121. Samoriski GM, Piekut DT, Applegate CD. Regional analysis of the spatial patterns of Fos induction in brain following flurothyl kindling. Neuroscience 1998; 84: 1209-22.

122. Chiasson BJ, Dennison Z, Robertson HA. Amygdala kindling and immediate-early genes. Brain Res Mol Brain Res 1995; 29: 191-9.

123. Teskey GC, Atkinson BG, and Cain DP. Expression of the proto-oncogene c-fos following electrical kindling in the rat. Brain Res Mol Brain Res 1991; 11: 1-10.

124. Watanabe Y, Johnson RS, Butler LS, et al. Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy. J Neurosci 1996; 16: 3827-36.

125. Rocha L, Kaufman DL. In vivo administration of c-Fos antisense oligonucleotides accelerates amygdala kindling. Neurosci Lett 1998; 241: 111-4.

126. Chiasson BJ, Hong MG, Robertson HA. Intra-amygdala infusion of an end-capped antisense oligodeoxynucleotide to c-fos accelerates amygdala kindling. Brain Res Mol Brain Res 1998; 57: 248-56.

127. Sutula TP, Hermann B. Progression in mesial temporal lobe epilepsy [editorial; comment]. Ann Neurol 1999; 45: 553-6.

128. Tasch E, Cendes F, Li LM, et al. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy [see comments]. Ann Neurol 1999; 45: 568-76.

129. Engel J, Williamson PD, Wieser HG. Mesial temporal lobe epilepsy. In: Engel J, Pedley TA, eds. New York: Lippincott Raven Press, 1997: 2417-26.

130. VanLandingham KE, Heinz ER, Cavazos JE, et al. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions [see comments]. Ann Neurol 1998; 43: 413-26.

131. Jackson GD, McIntosh AM, Briellmann RS, et al. Hippo-campal sclerosis studied in identical twins. Neurology 1998; 51: 78-84.

132. Fernandez G, Effenberger O, Vinz B, et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 1998; 50: 909-16.

133. Ojeda SR, Urbanski HF. Puberty in the rat. In: Knobil E, ed. The physiolpogy of reproduction. New York: Raven Press, 1994: 363-411.

134. Moshé S, Shinnar S, Swann J. Partial (focal) seizures in developing brain. In: Schwartzkroin PA, Moshé SL, Noebels JL, Swann JW, eds. Brain Development and Epilepsy. New York: Oxford Univ Press, 1995: 34-65.

135. Sperber EF, Haas KZ, Stanton PK, et al. Resistance of the immature hippocampus to seizure-induced synaptic reorgani-zation. Devel Brain Res 1991; 60: 88-93.

136. Albala BJ, Moshé SL, Okada R, Kainic-acid-induced seizures: a developmental study. Dev Brain Res 1984; 13: 139-48.

137. Haas KZ, Sperber EF, Opranashuk LA, et al. Resistance of the immature hippocampus to morphologic and physiologic altera-tions following status epilepticus or kindling. Hippocampus 2001; 11: 615-25.

138. Sperber EF, Haas KZ, Romero MT, et al. Flurothyl status epilepticus in developing rats: behavioral, electrographic, histological and electrophysiological studies. Brain Res Dev Brain Res 1999; 116: 59-68.

139. Sankar R, Shin DH, Liu H, et al. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998; 18: 8382-93.

140. Sankar R, Shin DH, Wasterlain CG. Serum neuron-specific enolase is a marker for neuronal damage following status epilepticus in the rat. Epilepsy Res 1997; 28: 129-36.

141. Haas KZ, Sperber EF, Opanashuk LA, et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocam-pus 2001; 11: 615-25.

142. Toth Z, Yan XX, Haftoglou S, et al. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998; 18: 4285-94.

143. Chen K, Baram TZ, Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature Med 1999; 5: 888-94.

144. Sarkisian MR, Holmes GL, Carmant L, et al. Effects of hyperthermia and continuous hippocampal stimulation on the immature and adult brain. Brain Dev 1999; 21: 318-25.

145. Shinnar S, Maytal J, Krasnoff L, et al. Recurrent status epilepticus in children [published erratum appears in Ann Neurol 1992 Sep; 32: 394]. Ann Neurol 1992; 31: 598-604.

146. Shinnar S, Berg AT, Moshe SL, et al. Risk of seizure recurrence following a first unprovoked seizure in childhood: a prospective study. Pediatrics 1990; 85: 1076-85.

147. Baraban SC, Schwartzkroin PA. Flurothyl seizure suscep-tibility in rats following prenatal methylazoxymethanol treatment. Epilep Res 1996; 23: 189-94.

148. Chevassus-au-Louis N, Baraban SC, Gaiarsa JL, et al. Cortical malformations and epilepsy: new insights from animal models. Epilepsia 1999; 40: 811-21.

149. Germano IM, Sperber EF. Transplacentally induced neuronal migration disorders: an animal model for the study of the epilepsies. J Neurosc Res 1998; 51: 473-88.

150. Germano IM, Zhang YF, Sperber EF, et al. Neuronal migration disorders increase seizure susceptibility to febrile seizures. Epilepsia 1996; 37: 902-10.

151. Germano IM, Sperber EF, Moshé SL. Molecular and experimental aspects of neuronal migration disorders. In: Guerrini R, Andermann F, Canapichi R, Roger J, Zifkin BG, Pfanner P, eds. Dysplasias of cerebral cortex and epilepsy. New York: Lippincott-Raven Press, 1996: 22-34.

152. Germano IM, Sperber EF, Ahuja S, et al. Evidence of enhanced kindling and hippocampal neuronal injury in immature rats with neuronal migration disorders. Epilepsia 1998; 39: 1253-60.

153. Sankar R, Shin D, Liu H, et al. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia 2000; 41: S53-6.

154. McCabe BK, Silveira DC, Cilio MR, et al. Reduced neurogenesis after neonatal seizures. J Neurosci 2001; 21: 2094-103.

155. Sperber EF, Haas KZ, Stanton PK, et al. Resistance to damage of the immature hippocampus to flurothyl induced status epilepticus. Ann Neurol 1991; 30: 495.

156. Holmes GL, Sarkisian M, Ben-Ari Y, et al. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999; 404: 537-53.

157. Holmes GL, McCabe B. Brain development and generation of brain pathologies. Int Rev Neurobiol 2001; 45: 17-41.

158. Ribak CE, Navetta MS. An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate cell death in 15 day old rats. Brain Res Dev Brain Res 1994; 79: 47-62.

159. Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985; 5: 1016-22.

160. Dube C, Brunson K, Eghbal-Ahmadi M, et al. Febrile Seizures Lead to Increased Susceptibility to Limbic Seizures During Adulthood. Epilepsia 1999; 40 (suppl 7): 159.

161. Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Develop Brain Res 1996; 97: 194-206.

162. Miller LP, Johnson AE, Gelhard RE, et al. The ontogeny of excitatory amino acid receptors in the rat forebrain-II. Kainic acid receptors. Neuroscience 1990; 35: 45-51.

163. Ben-Ari Y, Tremblay E, Berger ML, et al. Kainic acid seizure syndrome and binding sites in developing rats. Dev Brain Res 1984; 14: 284-8.

164. Insel TR, Miller LP, Gelhard RE. The ontogeny of excitatory amino acid receptors in the rat forebrain-I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience 1990; 35: 31-43.

165. Tremblay E, Roisin MP, Represa A. Transient increased density of NMDA binding sites in the developing rat hippo-campus. Brain Res 1988; 461: 393-6.

166. Pellegrini GD, Bennett MV, Zukin RS. Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 1992; 144: 65-9.

167. Schmitt J, Dux E, Gissel C, et al. Regional analysis of developmental changes in the extent of GluR6 mRNA editing in rat brain. Brain Res 1996; 91: 153-7.

168. Pujic Z, Matsumoto I, Wilce PA. Expression of the gene coding for NR1 subunit of the NMDA receptor during rat brain development. Neurosci Lett 1993; 162: 67-70.

169. Condorelli DF, Dell'Albani P, Amico C, et al. Development profile of metabotropic glutamate 3 receptor mRNA in rat brain. Molec Pharm 1992; 41: 660-4.

170. Friedman LK, Sperber EF, Moshé SL, et al. Developmental regulation of glutamate and GABAA receptor gene expression in rat hippocampus following kainate-induced status epilepticus. Dev Neurosci 1997; 19: 529-42.

171. Baram TZ, Ribak CE. Peptide-induced infant status epilepticus causes neuronal death and synaptic organization. Neuro Report 1995; 6: 277-80.

172. Leite JP, Babb TL, Pretorius JK, et al. Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res 1996; 26: 219-31.

173. Haas KZ, Sperber EF, Benenati B, et al. Idiosyncrasies of limbic kindling in developing rats. In: Corcoran ME, Moshé SL, eds. Kindling 5. New York: Plenum Press, 1998: 15-25.

174. Okada R, Moshé SL, Albala BJ. Infantile status epilepticus and future seizure susceptibility in the rat. Dev Brain Res 1984; 15: 177-83.

175. Koh S, Storey TW, Santos TC, et al. Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 1999; 53: 915-21.

176. Holmes GL, Thompson JL. Effects of kainic acid on seizure susceptibility in the developing brain. Dev Brain Res 1988; 39: 51-9.

177. Liu Z, Gatt A, Werner SJ, et al. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 1994; 19: 191-204.

178. Corcoran ME, Armitage LA, Gilbert TH, et al. Kindling and spatial cognition. In: Corcoran ME, Moshé SL, eds. Kindling 5. New York: Plenum Press, 1998.

179. Feldblum S, Ackermann RF. Increased susceptibility to hippocampal and amygdala kindling following intrahippo-campal kainic acid. Exp Neurol 1987; 97: 255-69.

180. Kaneko Y, Wada JA, Kimura H. Is the amygdaloid neuron necessay for amygdaloid kindling? In: Wada JA, ed. Kindling 2. New York: Raven Press, 1981.

181. Stafstrom CE, Chronopoulos A, Thurber S, et al. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 1993; 34: 420-32.

182. Gilbert ME, Cain DP. A single neonatal pentylenetetrazol or hypothermia convulsion increases kindling susceptibility in the adult rat. Dev Brain Res 1985; 22: 169-80.

183. Moshé SL, Albala BJ. Kindling in developing rats: per-sistence of seizures into adulthood. Dev Brain Res 1982; 4: 67-71.

184. Moshé SL, Albala BJ. Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann Neurol 1983; 13: 552-7.

185. Zahn C. Catamenial epilepsy: clinical aspects. Neurology 1999; 53: S34-7.

186. Woolley CS, Weiland NG, McEwen BS, et al. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 1997; 17: 1848-59.

187. Nicoletti F, Speciale C, Sortino MA, et al. Comparative effects of estradiol benzoate, the antiestrogen clomiphene citrate, and the progestin medroxyprogesterone acetate on kainic acid-induced seizures in male and female rats. Epilepsia 1985; 26: 252-7.

188. Hom AC, Buterbaugh GG. Estrogen alters the acquisition of seizures kindled by repeated amygdala stimulation or pentylenetetrazol administration in ovariectomized female rats. Epilepsia 1986; 27: 103-8.

189. Buterbaugh GG, Hudson GM. Estradiol replacement to female rats facilitates dorsal hippocampal but not ventral hippocampal kindled seizure acquisition. Exp Neurol 1991; 111: 55-64.

190. Woolley CS, Schwartzkroin PA. Hormonal effects on the brain. Epilepsia 1998; 39: S2-8.

191. Velisek L, Veliskova J, Etgen AM, et al. Region-specific modulation of limbic seizure susceptibility by ovarian steroids. Brain Res 1999; 842: 132-8.

192. Jacono JJ, Robertson JM, The effects of estrogen, progesterone, and ionized calcium on seizures during the menstrual cycle of epileptic women. Epilepsia 1987; 28: 571-7.

193. Schwartz-Giblin S, Korotzer A, Pfaff DW. Steroid hormone effects on picrotoxin-induced seizures in female and male rats. Brain Res 1989; 476: 240-7.

194. Veliskova J, Velisek L, Galanopoulou AS, et al. Neuropro-tective effects of estrogens on hippocampal cells in adult female rats after status epilepticus. Epilepsia 2000; 41: S30-5.

195. Singer CA, Rogers KL, Strickland TM, et al. Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett 1996; 212: 13-6.

196. Sawada H, Ibi M, Kihara T, et al. Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death. J Neurosci Res 1998; 54: 707-19.

197. Dluzen DE. Neuroprotective effects of estrogen upon the nigrostriatal dopaminergic system. J Neurocytol 2000; 29: 387-99.

198. Toung TK, Hurn PD, Traystman RJ, et al. Estrogen decreases infarct size after temporary focal ischemia in a genetic model of type 1 diabetes mellitus. Stroke 2000; 31: 2701-6.

199. Bramlett HM, Dietrich WD. Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. J Neurotrauma 2001; 18: 891-900.

200. Reibel S, Andre V, Chassagnon S, et al. Neuroprotective effects of chronic estradiol benzoate treatment on hippocampal cell loss induced by status epilepticus in the female rat. Neurosci Lett 2000; 281: 79-82.

201. Moshé SL, Ludvig N, Kindling. In: Pedley TA, Meldrum BS, Eds. Recent Adv Epilep 4. Edinburgh: Churchill Livingstone, 1988: 21-44.

202. Coulter DA. Latent Period in Epilepsy. In: Annual Meeting of the American Epilepsy Society. 2001. Philadelphia: Blackwell Science, Inc.

203. Nitecka L, Tremblay E, Charton G, et al. Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histo-pathological sequelae. Neuroscience 1984; 13: 1073-94.

204. Friedman LK, Pellegrini-Giampietro DE, Sperber EF, et al. Kainate-induced status epilepticus alters glutamate and GABA-A receptor gene expression. J Neurosci 1994; 14: 2697-707.

205. Hickenbottom SL, Grotta J. Neuroprotective therapy. Semin Neurol 1998; 18: 485-92.

206. Pellicciari R, Costantino G, Marinozzi M, et al. Modulation of glutamate receptor pathways in the search for new neuroprotective agents. Farmaco 1998; 53: 255-61.

207. Obrenovitch TP. Neuroprotective strategies: voltage-gated Na+-channel down-modulation versus presynaptic glutamate release inhibition. Rev Neurosci 1998; 9: 203-11.

208. Lipton SA, Choi YB, Sucher NJ, et al. Neuroprotective versus neurodestructive effects of NO-related species. Biofactors 1998; 8: 33-40.

209. Vaughan CJ, Delanty N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 1999; 30: 1969-73.

210. Semkova I, Krieglstein J. Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Brain Res Rev 1999; 30: 176-88.

211. Veliskova J, Galanopoulou A, Velisek L, et al. Estrogens have neuroprotective effects on hippocampal cells in adult females following kainic acid-induced status epilepticus. Epilepsia 1999; 40: 27.

212. Inestrosa NC, Marzolo MP, Bonnefont AB. Cellular and molecular basis of estrogen's neuroprotection. Potential relevance for Alzheimer's disease. Mol Neurobiol 1998; 17: 73-86.

213. Prasad A, Williamson JM, Bertram EH. Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus. Ann Neurol 2002; 51: 175-81.