Original article

Epileptic Disord 2022; 24 (3): 507-516

Improved access to rapid electroencephalography at a community hospital reduces inter-hospital transfers for suspected non-convulsive seizures

Evan Samuel Madill¹, Kapil Gururangan², Prashanth Krishnamohan¹

¹ Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
² Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Improved Access to Rapid Electroencephalography at a Community Hospital Reduces Inter-Hospital Transfers for Suspected Non-Convulsive Seizures

Madill ES¹, Gururangan K², Krishnamohan P¹

Epileptic ------

¹ Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA

² Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

BACKGROUND	 Delays in EEG acquisition and interpretation force providers to manage patients with suspected non-convulsive seizures empirically without EEG data or transfer for EEG monitoring. Building conventional EEG capability in community hospitals is resource-intensive and does not address the delays inherent in conventional EEG infrastructure. Novel point-of-care EEG devices could expand rapid access to EEG monitoring, expedite management of non-convulsive seizures, and reduce unnecessary transfers.
AIMS	• Describe the impact of rapid access to EEG using a novel, point-of-care EEG device (Rapid-EEG) with remote interpretation (tele-EEG) on rate of inter-hospital transfer for long-term EEG monitoring.
STUDY SITES	 Stanford Health Care (SHC) operates an academic medical center, Stanford University Hospital (SUH), and an affiliated community hospital, SHC ValleyCare. SUH has 24/7 access to conventional EEG monitoring and interpretation by EEG-trained neurologists. Before the implementation of Rapid-EEG, SHC ValleyCare had access to conventional EEG only for routine studies during typical business hours and EEGs were interpreted by the local on-call neurologists without dedicated fellowship training in EEG. After the implementation of Rapid-EEG, SHC ValleyCare acquired 24/7 access to EEG monitoring in addition to routine conventional EEG during business hours, and later, EEG interpretation was provided remotely by EEG-trained neurologists at SUH (tele-EEG). This established a <i>hub-and-spoke model</i> for on-site EEG acquisition at the community "spoke" hospital and tele-EEG interpretation at the academic "hub" hospital.
DESIGN	 Retrospective cohort study of patients who underwent Rapid-EEG monitoring as part of a new standard-of-care at a community hospital between December 2018 and March 2020. Rapid-EEG findings were obtained from the EEG report generated by the neurologist who originally read the study (SHC ValleyCare neurologist before October 2019, SUH epileptologist after October 2019). Potential transfers were identified according to historical practice patterns based on a stepwise model that considered the clinical indication for EEG monitoring (preceding clinical event, cardiac arrest, or unexplained encephalopathy), immediate availability of conventional EEG, and, if available, conventional EEG findings.
OUTCOME	• Number of patients transferred for long-term EEG monitoring compared to the number of patients identified as potential transfers.

Rapid Response EEG System

EEG Review Modalities

Reduced Montage EEG — on bedside device or remote cloud portal

- 98% sensitivity for seizures and 100% specificity for seizures and HEP *Gururangan K et al. Clin Neurophysiol Pract 2018;3:65.*
- 95% concordance and 93% intra-rater agreement with full montage EEG Westover MB et al. Neurocrit Care 2020;33:479.

EEG Sonification — on bedside device only

• 98% sensitivity for seizures and 85% specificity for seizures and HEP Parvizi J et al. Epilepsia 2018;59:877.

Clarity Seizure Burden Trend — on bedside device or remote cloud portal

• 100% sensitivity and 93% specificity for status epilepticus Kamousi B et al. Neurocrit Care 2021;34:908.

Validating Studies

DECIDE Multicenter Clinical Trial – Vespa PM et al. Crit Care Med 2020;48:1249

- Site: ICUs in five academic hospitals
- Findings: Bedside review of Rapid-EEG waveforms and sonification changed diagnosis and treatment decisions in 40% and 20% of cases, respectively, and increased diagnostic accuracy and confidence
- Stanford University Pilot Study Hobbs K et al. Neurocrit Care 2018;29:302
- Site: ICU in single academic hospital
- Findings: Rapid-EEG sonification changed treatment decisions in 40% of cases and resulted in a significant net reduction in unnecessary anti-seizure treatments
- John Muir Health Pilot Study Yazbeck M et al. J Neurosci Nurs 2019;51:308
- Site: ICU in single community hospital
- Findings: Rapid-EEG sonification and waveform review ruled out status epilepticus and prevented overtreatment in 40% of cases

Temple University and Stanford University Pilot Study — Wright NMK et al. Emerg Med J 2021;38:923

- Site: EDs in an academic hospital and a community hospital
- Findings: Rapid-EEG changed management in 53% of cases, primarily by ruling out seizures and preventing overtreatment, and expedited ED disposition in 21% of cases

Historical Practice Patterns

Thirty-three patients in our cohort would have been considered as potential transfers for longterm EEG monitoring if Rapid-EEG were unavailable.

The majority of these patients (26 out of 33) had clinical events with impaired consciousness concerning for seizures that occurred afterhours, when EEG was otherwise unavailable.

Epileptic

Impact of Rapid-EEG and Tele-EEG on Rates of Inter-Hospital Transfer

	Patients Transferred (n/N)	Transfer Rate	ARR	NNT
Before Rapid-EEG	33/74	44.6%	—	-
After Rapid-EEG + Before Tele-EEG	2/40	5.0%	39.6%	2.5
After Rapid-EEG + After Tele-EEG	0/34	0.0%	44.6%	2.2

ARR = absolute risk reduction (historical rate minus observed rate); NNT = number needed to treat (inverse of ARR)

The integration of Rapid-EEG into clinical practice at a community hospital was associated with an 89% decrease in rates of observed completed transfers compared to estimated historical patterns (44.6% to 5.0%). Implementation of a hub-and-spoke tele-EEG model with remote Rapid-EEG review by expert epileptologists at the academic hospital further reduced the transfer rate; no patients were transferred during this later study period.

Key Points

Epileptic₋₋₋₋ ------ **Disorders**

- Most community hospitals lack the EEG capacity to manage patients with non-convulsive seizures, necessitating transfer for EEG monitoring.
- Improving EEG access can guide treatment of patients with non-convulsive seizures and mitigate transfers solely for EEG monitoring.
- The majority of Rapid-EEG studies occurred after-hours, when EEG would have been unavailable and patients would have been transferred.
- Rapid-EEG monitoring with tele-EEG review prevented transfer for 94% of patients who would historically have been transferred.
- Novel EEG devices and tele-EEG review enabled the development of a hub-and-spoke model for managing patients with non-convulsive seizures.