John Libbey Eurotext

Encephalopathy related to Status Epilepticus during slow Sleep: a link with sleep homeostasis? Volume 21, supplement 1, June 2019

  • [Amzica and Steriade, 1998] Amzica F., Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol. 1998;107:69-83.
  • [Amzica and Steriade, 2000] Amzica F., Steriade M. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci. 2000;20:6648-6665.
  • [Berg et al., 2010] Berg A.T., Berkovic S.F., Brodie M.J. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51:676-685.
  • [Borbély and Achermann, 2005] Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. In: Principles and practice of sleep medicine. 4th Ed. Kryger MH, Toth T, Dement WC. Philadelphia: Elsevier Saunders, 2005: 405-17.
  • [Blume and Pillay, 1985] Blume W.T., Pillay N. Electrographic and clinical correlates of secondary bilateral synchrony. Epilepsia. 1985;26:636-641.
  • [Bolsterli et al., 2011] Bolsterli B.K., Schmitt B., Bast T. Impaired slow wave sleep downscaling in encephalopathy with status epilepticus during sleep (ESES). Clin Neurophysiol. 2011;122:1779-1787.
  • [Bolsterli Heinzle et al., 2014] Bolsterli Heinzle B.K., Fattinger S., Kurth S. Spike wave location and density disturb sleep slow waves in patients with CSWS (continuous spike waves during sleep). Epilepsia. 2014;55:584-591.
  • [Boelsterli et al., 2017] Boelsterli B.K., Gardella E., Pavlidis E. Remission of encephalopathy with status epilepticus (ESES) during sleep renormalizes regulation of slow wave sleep. Epilepsia. 2017;58:1892-1901.
  • [Boly et al., 2017] Boly M., Jones B., Findlay G. Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain. 2017;140:1026-1040.
  • [Buchmann et al., 2011] Buchmann A., Ringli M., Kurth S. Sleep slow-wave activity as a mirror of cortical maturation. Cereb Cortex. 2011;21:607-615.
  • [Bushey et al., 2011] Bushey D., Tononi G., Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science. 2011;332:1576-1581.
  • [Buzsáki, 1989] Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31:551-570.
  • [Buzsaki, 1998] Buzsaki G. Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res. 1998;7:17-23. 1
  • [Campbell and Feinberg, 2009] Campbell I.G., Feinberg I. Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. PNAS. 2009;106:5177-5180.
  • [Campbell et al., 2011] Campbell I.G., Darchia N., Higgins L.M. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. Sleep. 2011;34:83-91.
  • [Caraballo et al., 2013] Caraballo R., Veggiotti P., Kaltenmeier M.C. Encephalopathy with status epilepticus during sleep or continuous spikes and waves during slow sleep syndrome: a multicenter, long-term follow-up study of 117 patients. Epilepsy Res. 2013;105:164-173.
  • [Chan et al., 2011] Chan S., Baldeweg T., Cross J.H. A role for sleep disruption in cognitive impairment in children with epilepsy. Epilepsy Behav. 2011;2:435-440.
  • [Csercsa et al., 2010] Csercsa R., Dombovári B., Fabó D. Laminar analysis of slow wave activity in humans. Brain. 2010;133:2814-2829.
  • [Destexhe and Sejnowski, 2001] Destexhe A., Sejnowski T. Thalamo-cortical Assemblies. Oxford UK: Oxford University Press; 2001.
  • [De Tiège et al., 2009] De Tiège X., Goldman S., Van Bogaert P. Insights into the pathophysiology of psychomotor regression in CSWS syndromes from FDG-PET and EEG-fMRI. Epilepsia. 2009;50:47-50. 7
  • [de Vivo et al., 2014] de Vivo L., Faraguna U., Nelson A.B. Developmental patterns of sleep slow wave activity and synaptic density in adolescent mice. Sleep. 2014;37:689-700.
  • [de Vivo et al., 2017] de Vivo L., Bellesi M., Marshall W. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science. 2017;355:507-510.
  • [Diekelmann and Born, 2010] Diekelmann S., Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114-126.
  • [Diering et al., 2017] Diering G.H., Nirujogi R.S., Roth R.H. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 2017;355:511-515.
  • [Ebus et al., 2011] Ebus S.C., Overvliet G.M., Arends J.B., Aldenkamp A.P. Reading performance in children with rolandic epilepsy correlates with nocturnal epileptiform activity, but not with epileptiform activity while awake. Epilepsy Behav. 2011;22:518-522.
  • [Esser et al., 2007] Esser S.K., Hill S.L., Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30:1617-1630.
  • [Fattinger et al., 2015] Fattinger S., Schmitt B., Bölsterli Heinzle B.K. Impaired slow wave sleep downscaling in patients with infantile spasms. Eur J Paediatr Neurol. 2015;19:134-142.
  • [Feinberg, 1982] Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17:319-334.
  • [Fenn et al., 2003] Fenn K.M., Nusbaum H.C., Margoliash D. Consolidation during sleep of perceptual learning of spoken language. Nature. 2003;425:614-616.
  • [Filippini et al., 2013] Filippini M., Boni A., Giannotta M., Gobbi G. Neuropsychological development in children belonging to BECTS spectrum: long-term effect of epileptiform activity. Epilepsy Behav. 2013;28:504-511.
  • [Frank et al., 2001] Frank M.G., Issa N.P., Stryker M.P. Sleep enhances plasticity in the developing visual cortex. Neuron. 2001;30:275-287.
  • [Gibbs et al., 2019] Gibbs SA, Nobili L, Halász P. Interictal epileptiform discharges in sleep and the role of the thalamus in Encephalopathy related to Status Epilepticus during slow Sleep. Epileptic Disord 2019; 21(S1): S54-S61.
  • [Guzzetta et al., 2005] Guzzetta F., Battaglia D., Veredice C. Early thalamic injury associated with epilepsy and continuous spike·wave during slow sleep. Epilepsia. 2005;46:889-900.
  • [Hirata and Castro-Alamancos, 2010] Hirata A., Castro-Alamancos M.A. Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol. 2010;103:1147-1157.
  • [Hirsch et al., 1990] Hirsch E., Marescaux C., Maquet P. Landau-Kleffner syndrome: a clinical and EEG study of five cases. Epilepsia. 1990;31:756-767.
  • [Hoel et al., 2016] Hoel E., Albantakis L., Cirelli C., Tononi G. Synaptic refinement during development and its effect on slow wave activity - a computational study. J Neurophysiol. 2016;115:199-213.
  • [Holmes and Lenck-Santini, 2006] Holmes G.L., Lenck-Santini P. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav. 2006;8:504-515.
  • [Huber et al., 2004] Huber R., Ghilardi M.F., Massimini M., Tononi G. Local sleep and learning. Nature. 2004;430:78-81.
  • [Huber et al., 2006] Huber R., Ghilardi M.F., Massimini M. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9:1169-1176.
  • [Huttenlocher, 1979] Huttenlocher P.R. Synaptic density in human frontal cortex - developmental change and effects of aging. Brain Res. 1979;163:195-205.
  • [Huttenlocher and Dabholkar, 1997] Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167-178.
  • [Issa, 2014] Issa N.P. Neurobiology of continuous spike-wave in slow-wave sleep and landau-kleffner syndromes. Ped Neurol. 2014;51:287-296.
  • [Jha et al., 2005] Jha S.K., Jones B.E., Coleman T. Sleep-dependent plasticity requires cortical activity. J Neurosci. 2005;25:9266-9274.
  • [Kanemura et al., 2009] Kanemura H., Sugita K., Aihara M. Prefrontal lobe growth in a patient with continuous spike-waves during slow sleep. Neuropediatrics. 2009;40:192-194.
  • [Kobayashi et al., 1994] Kobayashi K., Nishibayashi N., Ohtsuka Y., Oka E., Ohtahara S. Epilepsy with electrical status epilepticus during slow sleep and secondary bilatyeral synchrony. Epilepsia. 1994;35:1097-1103.
  • [Kobayashi et al., 2010] Kobayashi K., Watanabe Y., Inoue T. Scalp-recorded high-frequency oscillations in childhood sleep-induced electrical status epilepticus. Epilepsia. 2010;51:2190-2194.
  • [Kuki et al., 2014] Kuki I., Kawawaki H., Okazaki S., Ikeda H., Tomiwa K. Epileptic encephalopathy with continuous spikes and waves in the occipito-temporal region during slow-wave sleep in two patients with acquired Kanji dysgraphia. Epileptic Disord. 2014;16:540-545.
  • [Kurth et al., 2010] Kurth S., Ringli M., Geiger A. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010;30:13211-13219.
  • [Kurth et al., 2010] Kurth S., Jenni O.G., Riedner B.A. Characteristics of sleep slow waves in children and adolescents. Sleep. 2010;33:475-480.
  • [Kurth et al., 2012] Kurth S., Ringli M., Lebourgeois M.K. Mapping the electrophysiological marker of sleep depth reveals skill maturation in children and adolescents. Neuroimage. 2012;63:959-965.
  • [Leite et al., 2005] Leite J.P., Neder L., Arisi G.M. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia. 2005;46:134-141. 5
  • [Liu et al., 2012] Liu X., Somel M., Tang L. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res. 2012;22:611-622.
  • [Liu et al., 2015] Liu J., Lee H.J., Weitz A.J. Frequency-selective control of cortical and subcortical networks by central thalamus. Elife. 2015;4:e09215.
  • [Maquet et al., 1995] Maquet P., Hirsch E., Metz-Lutz M.N. Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Brain. 1995;118:1497-1520.
  • [Maret et al., 2011] Maret S., Faraguna U., Nelson A.B., Cirelli C., Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci. 2011;14:1418-1420.
  • [Massa et al., 2011] Massa R., de Saint-Martin A., Carcangiu R. EEG criteria predictive of complicated evolution in idiopathic rolandic epilepsy. Neurology. 2011;57:1071-1079.
  • [Morikawa et al., 1995] Morikawa T, Seino M, Watanabe M. Continuous spikes and waves during slow sleep. Electrical status epilepticus during slow sleep. In: Epileptic syndromes in infancy, childhood and adolescence. 5th Ed. Beaumanoir A, et al. London: John Libbey, 1995: 27-36.
  • [Mouridsen et al., 1993] Mouridsen S.E., Videbaek C., Sogaard H., Andersen A.R. Regional cerebral blood-flow measured by HMPAO and SPECT in a 5-year·old boy with Landau-Kleffner syndrome. Neuropediatrics. 1993;24:47-50.
  • [Nelson et al., 2013] Nelson A.B., Faraguna U., Zoltan J.T., Tononi G., Cirelli C. Sleep patterns and homeostatic mechanisms in adolescent mice. Brain Sci. 2013;3:318-343.
  • [Nir et al., 2011] Nir Y., Staba R.J., Andrillon T. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153-169.
  • [Olini et al., 2013] Olini N., Kurth S., Huber R. The effects of caffeine on sleep and maturational markers in the rat. PLoS ONE. 2013;8:e72539.
  • [Parisi et al., 2010] Parisi P., Bruni O., Pia Villa M. The relationship between sleep and epilepsy: the effect on cognitive functioning in children. Dev Med Child Neurol. 2010;52:805-810.
  • [Patry et al., 1971] Patry G., Lyagoubi S., Tassinari C.A. Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases. Arch Neurol. 1971;24:242-252.
  • [Petanjek et al., 2011] Petanjek Z., Judaš M., Šimic G. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS. 2011;108:13281-13286.
  • [Rakic et al., 1994] Rakic P., Bourgeois J.P., Goldman-Rakic P.S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res. 1994;102:227-243.
  • [Riedner et al., 2007] Riedner B.A., Vyazovskiy V.V., Huber R. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30:1643-1657.
  • [Romcy-Pereira et al., 2009] Romcy-Pereira R.N., Leite J.P., Garcia-Cairasco N. Synaptic plasticity along the sleep-wake cycle: implications for epilepsy. Epilepsy Behav. 2009;14:47-53.
  • [Sánchez Fernández et al., 2012] Sánchez Fernández I., Takeoka M., Tas E. Early thalamic lesions in patients with sleep-potentiated epileptiform activity. Neurology. 2012;78:1721-1727.
  • [Schreiner and Rasch, 2017] Schreiner T., Rasch B. The beneficial role of memory reactivation for language learning during sleep: A review. Brain Lang. 2017;167:94-105.
  • [Seegmüller et al., 2012] Seegmüller C., Deonna T., Dubois C.M. Long-term outcome after cognitive and behavioral regression in nonlesional epilepsy with continuous spike-waves during slow-wave sleep. Epilepsia. 2012;53:1067-1076.
  • [Siniatchkin et al., 2010] Siniatchkin M., Groening K., Moehring J. Neuronal networks in children with continuous spikes and waves during slow sleep. Brain. 2010;133:2798-2813.
  • [Solomon et al., 1993] Solomon G.E., Carson D., Pavalkis S., Fraser R., Labar D. Intracranial EEG monitoring in Landau-Kleffner syndrome associated with left temporal lobe astrocytoma. Epilepsia. 1993;34:557-560.
  • [Soprano et al., 1994] Soprano A.M., Garcia E.F., Caraballo R., Fejerman N. Acquired epileptic aphasia: neuropsychologic follow-up of 12 patients. Pediatr Neurol. 1994;11:230-235.
  • [Stickgold et al., 2000] Stickgold R., James L., Hobson J.A. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3:1237-1238.
  • [Tassinari and Rubboli, 2006] Tassinari C.A., Rubboli G. Cognition and paroxysmal EEG activities: from a single spike to electrical status epilepticus during sleep. Epilepsia. 2006;47:40-43. 2
  • [Tassinari et al., 1977] Tassinari CA, Dravet C, Roger J. ESES: encephalopathy related to electrical status epilepticus during slow sleep. In: Proceedings of the ninth congress international federation of EEG and clinical neurophysiology. Amsterdam: Elsevier Science, 1977: 529-30.
  • [Tassinari et al., 2000] Tassinari C.A., Rubboli G., Volpi L. Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia. Clin Neurophysiol. 2000;111:94-102. 2
  • [Tassinari et al., 2012] Tassinari CA, Cantalupo G, Dalla Bernardina B, et al. Encephalopathy related to status epilepticus during slow sleep (ESES) including Landau-Kleffner syndrome. In: Epileptic syndromes in infancy, childhood and adolescence. 5th Ed. Bureau A, et al. Montrouge: John Libbey Eurotext Ltd, 2012: 255-75.
  • [Tassinari et al., 2015] Tassinari C.A., Cantalupo G., Rubboli G. Focal ESES as a selective focal brain dysfunction: a challenge for clinicians, an opportunity for cognitive neuroscientists. Epileptic Disord. 2015;17:1-3.
  • [Tobler, 2000] Tobler I. Phylogeny of sleep regulation. In: Principles and practice of sleep medicine. 3rd Ed.Kryger MH, Roth T, Dement WC. Philadelphia: Saunders, 2000: 72-81.
  • [Tononi and Cirelli, 2014] Tononi G., Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12-34.
  • [Urbain et al., 2011] Urbain C., Di Vincenzo T., Peigneux P., Van Bogaert P. Is sleep-related consolidation impaired in focal idiopathic epilepsies of childhood? A pilot study. Epilepsy Behav. 2011;22:380-384.
  • [Urbain et al., 2013] Urbain C., Galer S., Van Bogaert P., Peigneux P. Pathophysiology of sleep-dependent memory consolidation processes in children. Int J Psychophysiol. 2013;89:273-283.
  • [Van Bogaert et al., 2012] Van Bogaert P., Urbain C., Galer S. Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol Clin. 2012;42:53-58.
  • [Vyazovskiy et al., 2007] Vyazovskiy V.V., Riedner B.A., Cirelli C., Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30:1631-1642.
  • [Vyazovskiy et al., 2008] Vyazovskiy V.V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200-208.
  • [Vyazovskiy et al., 2009] Vyazovskiy V.V., Olcese U., Lazimy Y.M. Cortical firing and sleep homeostasis. Neuron. 2009;63:865-878.
  • [Walker et al., 2002] Walker M.P., Brakefield T., Morgan A., Hobson J.A., Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron. 2002;35:205-211.
  • [Wilhelm et al., 2014] Wilhelm I., Kurth S., Ringli M. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity. J Neurosci. 2014;34:12568-12575.