Clinical commentary

Epileptic Disord 2019; 21 (1): 117-21

Berardinelli-Seip syndrome and progressive myoclonus epilepsy

Domenico Serino¹, Chiara Davico², Nicola Specchio³, Carlo Efisio Marras⁴, Franco Fioretto¹

¹ Child Neurology and Psychiatry Unit, "Regina Montis Regalis" Hospital, Mondovì

² Child Neurology and Psychiatry Unit, "Regina Margherita" Pediatric Hospital, Turin

³ Child Neurology Unit, "Bambino Gesù" Pediatric Hospital, Rome

⁴ Child Neurosurgery Unit, "Bambino Gesù" Pediatric Hospital, Rome, Italy

Received August 28, 2018; Accepted December 01, 2018

Epileptic_{~~}

Celia's encephalopathy:

distinguishing features in relation to "classic" lipodystrophy type 2

- Early-onset myoclonic seizures
- Photosensitivity on EEG
- Neurodegenerative encephalopathy
 - Ataxia
 - Action myoclonus
 - Progressive cognitive impairment
 - Cortical myoclonus
- Progressive cerebral atrophy
- Exitus between 8 and 12 years of age

Key Points

- 3-year-old boy with Progressive Myoclonus Epilepsy and Lipodystrophy type 2
- Moderate cognitive impairment, hyperactivity, progressive ataxia
- Slow and disorganized EEG background activity with trains of atypical high-voltage multifocal spike-wave complexes
- Normal brain MRI scan
- Clinical characteristics
 - Myoclonus, atypical absence seizures, myoclonic absence seizures, drop attacks
 - Progressive degeneration of EEG background activity
 - Progression towards refractory status epilepticus
 - Progressive movement and gait disorder

- Lipodystrophy type 2 may be considered in rapidly progressive myoclonus epilepsies associated with metabolic disorders.
- Application of a vagal nerve stimulator might be a valid palliative therapy