Effet du couvert ligneux sur la structure de la végétation herbacée de jachères soudaniennes

La culture itinérante et/ou épisodique se pratique depuis des siècles dans toute l’Afrique. Les paysans défrichent et exploitent un terrain pendant quelques années, puis y laissent la végétation naturelle repousser le temps de restaurer la fertilité du sol : c’est la jachère. Cette stratégie agroforestière convient bien aux sols tropicaux, souvent fragiles et peu fertiles, et permet la remontée biologique grâce à une savane arbustive ou arborée [1].

Dans ce système d’utilisation des terres, des arbres sont épargnés par le paysan lors du défrichement soit pour favoriser l’évolution de la future jachère, soit, le plus souvent, parce qu’il s’agit d’arbres agroforestiers. Actuellement, la tendance à la sédentarisation et à l’accroissement de la population ont conduit à une forte augmentation des surfaces cultivées ; les temps de jachère se sont considérablement raccourcis [1]. Ainsi, diverses stratégies d’amélioration ont été mises au point ; elles portent sur l’introduction d’espèces herbacées de savane (Andropogon gayanus) ou d’espèces ligneuses, souvent légumineuses (Acacia sp., Cajanus cajan...).

Cette étude analyse la sensibilité de la strate herbacée à la présence des arbres dans les jachères naturelles ; il s’agit de déterminer l’effet de l’arbre sur l’hétérogénéité et la composition spécifique de la végétation post-culturelle pour évaluer l’impact de la pratique sur la diversité des ressources végétales.

Matériel et méthode

Zone d’étude

L’étude a été menée en Haute-Casamance, dans la partie méridionale du Sénégal, soit entre 12°50’ et 13°05’ de latitude N, et entre 14°38’ et 14°58’ de longitude O (figure 1). La région présente une géomorphologie tabulaire caractérisée par des ensembles de bas plateaux au modèle plat et peu marqué ; l’horizontalité est le trait dominant des paysages.
Références

Figure 1. La zone d’étude : cartes de situation.

C’est à la faveur d’alternances climatiques du secondaire que les grès pré-cambriens du grand et du profond bassin sédimentaire sénégal-mauritanien ont été façonnés en un paysage ainsi organisé [2] :
- plateaux résiduels, à faible altitude (40 m), dont les bords sont matérialisés par la cuirasse ferrugineuse affleurante ;
- glaciers de raccordement, plus ou moins induits ;
- terrasses et bas fonds alluvionnaires, ces derniers étant soumis à des inondations temporaires. Ils ont généré, en surface, des sables fortement ferrugineux et argileux entre lesquels s’intercalent des niveaux de cuirasse, donnant des sols selon la position topographique [3].

Le climat est tropical sec, caractérisé par une longue saison sèche (7 mois) et une courte période humide (5 mois). Les précipitations varient de 900 à 1 100 mm par an, dont 60 à 80 % durant les mois d’août et de septembre. Les températures extrêmes sont 23 °C (janvier) et 32 °C (mai), la température moyenne étant de 27 °C.

La végétation naturelle s’organise selon une toposéquence typique où les plateaux et les vallées se relaient dans un continuum spatial à faibles contrastes. La végétation ligneuse haute des zones d’interflue est dominée par Bombax costatum Pellegr et Vuill., Pterocarpus erinaceus Poir., Daniellia oliveri (Rolfe) Hutch. et Dalz., Cordyla pinnata (Lepr.) Milne-Redhead, Parkia biglobosa (Jacq.) Benth.,

Matériel

A défaut de pouvoir suivre les changements de la végétation herbacée des jachères pendant un temps suffisamment long, l’étude a été réalisée par une approche synchrone consistant à choisir en même temps des parcelles de jachères d’âges différents, âges qui sont déterminés par enquête (période de l’abandon) auprès des propriétaires des parcelles.

Cinq parcelles âgées de 1, 3, 5, 10 et de 17 ans d’abandon rural ont ainsi été retenues au niveau du territoire de Saré Yéro Bana dans le département de Kolda (figure 1), situé en front pionnier, dans une région encore relativement épargnée par la demande foncière. Le terroir représente ainsi une sorte d’état initial non dégradé d’un système d’exploitation rural soudanien. La situation est d’autant plus intéressante qu’elle est apparemment à évoluer, dans les années à venir, en raison de l’accentuation de la pression démographique due à l’amorce de l’installation de plusieurs villages maraboutsissus issu du bassin arachidier [4].

Relevés floristiques

Le nombre de relevés sous arbre est plus élevé que celui réalisé dans les milieux découverts ; 1 relevé HC sert parfois de témoin à 2 relevés SC. La détermination des taxons a été effectuée à l’aide de la Flore du Sénégal [5]. La synonymie a été actualisée et normalisée sur la base de l’Énumération des plantes à fleurs d’Afrique tropicale [6].

Expression des données

Afin de cerner l’effet de l’arbre sur la végétation herbacée, une analyse facteur-ielle des correspondances (AFC) a été utilisée. Cette technique vise à résumer l’information mathématiquement homogène contenue dans un tableau rectangulaire de données, tout en la décomposant en facteurs hiérarchisés qui en contiennent chacun une part. Elle utilise la métrique de c^2, qui s’obtient en pondérant les données par les effectifs des lignes et des colonnes : ceci permet de rendre lignes et colonnes comparables et de les représenter sur un même graphe [7, 8]. L’analyse des correspondances a été utilisée ici dans des tableaux de recouvrement des espèces, évalué sur une échelle de 0 à 100.

Les variations de la richesse spécifique en fonction de l’âge de la jachère ont été examinées à travers une analyse de variance à un critère de classification [9], les différences significatives étant évaluées par le test de Newman-Keuls sous les arbres et hors de leur couvert. Le seuil de significance a été fixé à $\alpha/2 = 0.005$ et non à $\alpha = 0.05$ pour deux raisons : d’une part, le test unilatéral est moins conservateur qu’un test bilatéral et, d’autre part, le manque d’informations concernant la normalité des deux répartitions nous oblige à prendre le minimum de risques [9].

La fréquence et l’abondance relatives de chaque espèce ont ensuite permis de calculer, pour chacun des âges d’abandon rural, des indices de diversité selon Shannon-Weaver [10]. L’indice est défini par :

$$ H = - \sum P_i \log_2 P_i $$

où P_i représente l’abondance relative de l’espèce ($P_i = n_i/n$; n représente le recouvrement moyen de l’espèce, i et n la somme de recouvrement des espèces de la végétation).

Pour une jachère donnée, nous avons calculé la valeur théorique de la diversité maximale pouvant être atteinte (Hmax) et correspondant à une répartition égale de tous les individus entre toutes les espèces (Hmax = $\log_2 S$, où S représente le nombre d’espèces). Cette information est intéressante dans la mesure où elle permet la définition d’un nouveau paramètre, l’équabilité (E), défini par le rapport $H/Hmax$ qui traduit le degré de diversité atteint par rapport au maximum possible. Il s’agit d’une mesure relative supportant mieux qu’une autre les comparaisons entre les sites.

Résultats et discussion

Variabilité spatiale : physisomie de la végétation

Pour apprécier la physisomie de la végétation, les techniques d’analyse de correspondance, qui permettent de résumer l’information du tableau de données sous forme graphique, ont été utilisées. Cinq matrices de 10 x 6, 25 x 22, 15 x 5, 25 x 7 et 25 x 18 relevés/espèces correspondant à la végétation des parcelles de jachères âgées respectivement de 1, 3, 5, 10 et 17 ans ont été soumises à l’AFC.

Le tableau II rassemble les résultats relatifs à l’AFC.

<table>
<thead>
<tr>
<th>Jachère</th>
<th>Axes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>17.7</td>
<td>16.3</td>
</tr>
<tr>
<td>J3</td>
<td>12.4</td>
<td>9.9</td>
</tr>
<tr>
<td>J5</td>
<td>22.0</td>
<td>20.4</td>
</tr>
<tr>
<td>J10</td>
<td>23.3</td>
<td>12.2</td>
</tr>
<tr>
<td>J17</td>
<td>14.0</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Tableau 1: Répartition de l’échantillonnage dans les différentes classes d’âge de jachère

<table>
<thead>
<tr>
<th>Âge (ans)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>10</td>
<td>25</td>
<td>15</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>HC</td>
<td>7</td>
<td>22</td>
<td>5</td>
<td>20</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>47</td>
<td>20</td>
<td>45</td>
<td>172</td>
</tr>
</tbody>
</table>

* SC : sous couvert ; HC : hors couvert.
La variance des données portée par l’ensemble des 4 premiers axes factoriels varie de 35,8 à 61,4 %. Le plan principal (axes F1 et F2) en absorbe de 22 à 42 % ; c’est sur ce plan que nous allons établir l’analyse de l’hétérogénéité du milieu.

Considérons la parcelle de jachère de 17 ans (figure 2). La contribution, qui mesure l’importance d’un relevé ou d’une espèce par rapport à un axe factoriel, permet de donner une signification écologique aux différents axes. Ainsi peuvent intervenir de manière significative les points dont la contribution est supérieure à la moyenne (23,3 et 17,2 % respectivement pour les observations ou relevés et pour les variables ou espèces).

Peuvent alors être retenus sur l’axe 1 (figure 2), pour les abcisses positives, les relevés 79 (91)*, 61 (56), 73 (52), 71 (46), 63 (35) et, pour les abcisses négatives, 78 (88), 102 (63), 80 (56), 84 (46).

L’axe horizontal (ou axe F1) oppose ainsi les relevés SC (nombre impair) à ceux des milieux HC (nombre pair). Tous les relevés de nombre pair présentent une contribution supérieure à la contribution moyenne. L’axe F1 représente donc le facteur ombrage, généré par le couvert des arbres.

À ces deux groupes de relevés sont associées des espèces. Sous les arbres (dans la partie droite de la figure 2), Hibiscus diversifolius Jacq. (158), Ipomoea argentaurea Hall. f. (69), Andropogon pseudapricris Stapf (56) et Pandiaka angustifolia (Vahl.) (47) présentent des contributions supérieures à la contribution moyenne. Dans les milieux découverts, ce sont Schizachyrium exile (Hochst.) Pelgr (369), Panicum laetum Kunth (47) et Spermacoce chaetocaphala (DC.) Hepper (36) qui sont déterminants.

L’axe vertical (ou axe F2) distingue nettement deux groupes dans les relevés SC et HC. Le premier est constitué par les relevés de replat dans les ordonnées positives tandis que le second réunit l’ensemble des relevés de pente et de dépression dans les ordonnées négatives. Cette séparation met en évidence le gradient topographique, en relation certainement avec l’abondance plus ou moins variable de l’argile.

* Le premier nombre est le numéro du relevé ; la valeur entre parenthèses correspond à la contribution sur l’axe considéré.

Figure 2. Analyse partielle : jachère 17 ans. Répartition des espèces et des relevés sous et hors couvert ligneux dans le plan des axes 1-2 (nombres impairs : relevés sous couvert ; nombres pairs : relevés hors couvert).
Pour ce qui est de l’axe 3, trois espèces seulement se dégagent des autres de par leur contribution. Ces espèces, S. exile (297) dans les ordonnées positives, P. laetum (220) et Digitaria horizontalis Willd. (112) pour les ordonnées négatives, se situent donc de part et d’autre de cet axe qui confirme ainsi la stabilité des groupes observés. Arbre et topographie s’associent pour créer une hétérogénéité de plus en plus grande du milieu qui gère la répartition de la végétation herbacée sous et hors couvert des arbres. L’hétérogénéité due spécialement à l’arbre permet de séparer nettement les biotopes sous et hors couvert des arbres.

Caractéristiques des biotopes sous et hors couvert de l’arbre

- **Cortège floristique**

La flore herbacée recensée dans les différentes jachères (tableau III) est riche de 90 espèces, réparties parmi 21 familles d’importance variable (tableau IV). Dans le cortège floristique (tableau III), l’effet du couvert permet de distinguer deux grands groupes d’espèces. Le premier est constitué par des espèces qui se retrouvent uniquement soit sous les arbres, soit hors ombrage ; ces sont des espèces exclusives (28,9 %), qui peuvent être soit scapifères lorsqu’elles sont étalées sous l’arbre (21,1 %), soit héliophiles si elles sont hors ombrage (7,8 %). Parmi les espèces scapifères, Merremia pinatta et Cassia absus sont présentes dans plus de 5 % des relevés. Polygala erioidera, Desmodium hirtum, Pandiaka heudelotii et Stylochiton warneckei dans 2 à 3 % des cas. Six autres espèces sont rencontrées 2 fois seulement (Chloris pilosa, Corchorus fascicularis, Eragrostis ciliaris, Hibuscus sabdariffa et Spermacoce radiata) et un plus grand nombre d’espèces rares, notamment Corchorus tridens, Hachelokloa granulifera Indigofera nigricans, Stylisanthes mucronata, Tephrosia purpurea, Sida alba Schyzochirium brevifolium et Ipomoea vagans, sont présentes 1 fois. Sept espèces sont strictement héliophiles (Cassia mimosoides, Ipomoea pechtrigera, Peristrophe bicalyculata...) ; elles sont donc des xérophiles. Le nombre d’espèces scapifères est plus de 2 fois supérieur à celui des héliophiles. La vé-
gétation apparaît ainsi nettement plus diversifiée sous l’arbre.
Le second groupe est constitué des espèces indifférentes, c’est-à-dire que l’on retrouve aussi bien sous l’arbre qu’à côté. Les espèces les plus fréquentes (rencontrées dans plus de 25 % des relevés) sont, par ordre décroissant : Schyzachrium nodulosum, Tephrosia pedicellata, Triumfetta pentandra, Cassia nigricans, Cassia obtusifolia, Hibiscus diversifolius, Cochlospermum planchonii, Elionorus elegans, Digitaria gayana, Waltheria indica, Indigofera aspera, Eragrostis tremula et Spermacoce chaetocarpha.

- Diversité spécifique de la végétation herbacée et âge des jachères

Le concept de diversité comporte deux notions qui doivent être considérées de façon simultanée. La première concerne le nombre d’unités systématiques présentes dans un écosystème donné ; ceci sont les espèces. La seconde se rapporte à la façon dont les individus des diverses espèces se répartissent.
L’examen de la liste floristique établie pour l’ensemble des jachères précédées permet de se rendre compte de l’extrême variabilité de la végétation herbacée sous et hors arbre. Pour les différents âges, la richesse de cette végétation varie en effet de 17 à 40 espèces hors ombrage et de 40 à 53 espèces sous les arbres (tableau V). Le rapport de richesse spécifique entre biotopes sous et hors arbre varie de 1,3 à 2. Il y a donc plus d’espèces dans la végétation sous arbre.
Ce résultat est à rapporter aux espèces exclusives, dont les espèces sciaphtées représentent un part importante puisque leur nombre varie de 12 à 28 dans les différentes jachères. Pour l’ensemble des jachères, 29 espèces exclusives sont sciaphtées (dont 10 sont présentes au moins dans deux parcelles de jachères différentes tandis que 3 espèces seulement sont héliophiles ; une seule espèce héliophile est retrouvée dans plus de deux jachères différentes).
Le nombre d’espèces par relevé varie de 6,6 à 9,4 hors arbre et de 10,8 à 14,8 sous couvert soit, en moyenne, respectivement 7,7 et 12,4 espèces, avec des coefficients de variation similaires (11,3 et 12 %).
La différence de richesse spécifique moyenne entre les biotopes, sous et hors couvert, est statistiquement significative ($t = 7,725 > t_{0,05} = 4,4604$). La richesse spécifique moyenne de la végétation herbacée est plus élevée sous l’arbre qu’en milieu découvert.
Pour chaque jachère étudiée, la richesse spécifique moyenne de la végétation herbacée sous arbre est supérieure à celle des milieux découverts (tableau V). Seul le niveau de signification varie. À l’exception de la jachère de 3 ans, la différence s’avère en fait très hautement significative car la valeur calculée t est supérieure en valeur absolue à la valeur critique de t au niveau de signification de 0,01. Il y a donc enrichissement de la végétation herbacée de la jachère sous l’arbre.

<table>
<thead>
<tr>
<th>Famille</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabaceae</td>
<td>23,3</td>
</tr>
<tr>
<td>Poaceae</td>
<td>18,9</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>11,1</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>5,6</td>
</tr>
<tr>
<td>Caesalpinaceae</td>
<td>4,4</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>4,4</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Araceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Acanthaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Labieae</td>
<td>2,2</td>
</tr>
<tr>
<td>Polygalaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Pedaliaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Sterculiaceae</td>
<td>1,1</td>
</tr>
</tbody>
</table>

| Tableau IV. Importance des différentes familles de la flore herbacée |

<table>
<thead>
<tr>
<th>Famille</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabaceae</td>
<td>23,3</td>
</tr>
<tr>
<td>Poaceae</td>
<td>18,9</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>11,1</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>5,6</td>
</tr>
<tr>
<td>Caesalpinaceae</td>
<td>4,4</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>4,4</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Araceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>3,3</td>
</tr>
<tr>
<td>Acanthaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Labieae</td>
<td>2,2</td>
</tr>
<tr>
<td>Polygalaceae</td>
<td>2,2</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Pedaliaceae</td>
<td>1,1</td>
</tr>
<tr>
<td>Sterculiaceae</td>
<td>1,1</td>
</tr>
</tbody>
</table>
 Ces valeurs de richesse spécifique (totale ou moyenne) sont très inférieures à celles observées pour une végétation naturelle de forêt claire dans la région de Kolda où, pour un effectif d’echantillonnage similaire, 74 espèces ont été reconnues et une moyenne de 10 et 16 espèces par relevé respectivement dans les clairières et les bosquets [11].

En ce qui concerne les indices de végétation, les valeurs de l’indice de diversité de Shannon (H) varient en effet de 3,2 à 4,2 bits sous les arbres et de 2 à 3,3 bits hors arbre. L’équilibrité est de 0,70, 0,57, 0,59, 0,58 et 0,73 sous l’arbre et de 0,45, 0,57, 0,55, 0,48 et 0,65 hors couvert pour chacune des différentes périodes de jachère (tableau V). L’examen de ce tableau fait apparaître que c’est la végétation scapophile qui possède la diversité H et l’équilibrité les plus fortes par rapport à la végétation des milieux hors couvert.

À l’exception de la parcelle de jachère de 3 ans, l’équilibrité est toujours plus forte pour la végétation scapophile. Il y a donc une plus grande individualisation de ce groupe écologique. En revanche, les coefficients de dominance sont nettement plus élevés pour la végétation héliophile. Une plus grande diversité implique une plus grande égalité des contributions individuelles et, donc, une moindre organisation du système formé par le peuplement. Inversement, une diversité plus faible signifie que le système est plus organisé [12].

Ainsi, sur le plan de l’organisation de ces phytocénoses, l’interprétation de l’information apportée par les indices permet d’indiquer que les biotopes découverts sont des milieux mieux organisés que les biotopes couverts. Ceci entraîne l’abondance (recouvrement) de certaines espèces (tableau VI) par rapport à d’autres, d’où une chute de l’indice de diversité.

Hétérogénéité temporelle : évolution des modifications dues à l’arbre

- Importance des modifications

Pour apprécier le niveau de discrimination des groupes et, ainsi, le classement des relevés, une analyse factorielle discriminante (AFD) sur variables qualitatives a été exécutée. Elle consiste à remplacer les variables qualitatives p par les coordonnées q sur les axes factoriels [15]. L’AFD a donc été réalisée sur 4 variables numériques pour chacun des âges de jachère à l’aide du logiciel STATITCF.

La proportion de relevés bien classés varie de 70,3, 85,0, 90,3, 90,7 et 98,3 % pour les jachères âgées respectivement de 1, 3, 5, 10 et 17 ans, c’est-à-dire qu’à partir de 17 ans d’abandon cultural, la séparation des relevés sous et hors couvert est quasi totale. Les relevés mal classés proviennent généralement des biotopes sous arbre (de 90 à 95 %); ils se trouvent alors répartis dans le groupe héliophile. L’effet arbre apparaît ainsi plus discriminant dans les vieilles jachères.

- **Fluctuations de la composition spécifique**

L’influence du temps d’abandon des parcelles sur la composition de la végétation herbacée a été examinée en soumettant le nombre d’espèces herbacées par relevé sous et hors arbre à une analyse de variance.

Sous les arbres, la richesse spécifique moyenne est sensiblement la même d’un âge à l’autre au cours des 10 premières années d’abandon cultural (F = 1,15), avec moins d’espèces dans les peuplements plus âgés (figure 3); le nombre d’espèces par relevé diminue ainsi avec l’âge de la jachère.

Seize espèces, parmi lesquelles Tephrosia purpurea, Stylosanthes mucronata, Indigofera secundiflora et Chloris pilosa, sont strictement inféodées à ce...
groupe. Dans la jachère de 17 ans, la richesse spécifique moyenne est nette-
ment plus élevée (Fₚ = 3,95 > F₀.₀₅ = 3,56). Parmi les espèces scapi-
philes observées dans cette parcelle, 7 sont communes à celles du groupe précédent (Acanthospermum hispidum, Commelina benghalensis, C. forskaloi, Cucumis melo, Ipomoea eriocarpa, Pan-
diaka heudelotii et Vigna luteola) et 6 y sont strictes (Cassia mimosoides, Cor-
chorus tridens, Digitaria horizontalis, Indigofera nigricans, Ipomoea hederifolia et Merremia aegyptiaca).

Le nombre d'espèces indicatrices de biotope couvert est de 46 pour les ja-
chères de 1 à 10 ans (dont 21 espèces pour celle de 1 an) et de 12 pour la ja-
chère de 17 ans. Deux phases importantes apparaissent donc dans l'évolu-
tion de la végétation herbacée de ce biotope.

Dans la végétation héliophile, les ja-
chères (J) âgées de 1, 5 et 10 ans se distinguent nettement de celles de 3 et
et 17 ans (Fₑ = 8,03 > F₀.₀₅ = 4,03) et, ainsi, J₁ = J₅ = J₁₀ < J₃ = J₁₇. L'évolu-
tion de ces groupes ne semble pas s'ap-
parenter aux processus généralement rapportés pour des situations simi-
laires [16] qui se caractérisent par une augmentation significative du nombre d'espèces herbacées au cours des 4 pre-
mières années, voire entre la sixième et la dixième année [17, 18], suivie par un
affaiblissement de l'évolution. Les groupes identifiés ne révéleraient donc
pas les phases d'une évolution quel-
conque du milieu de jachère contraire-
ment à ceux de la végétation scaphe.

Lorsque l'on considère la jachère et non le biotope (sous ou hors arbrisseau), la ri-
chesse de la flore herbacée est de 47, 58, 43, 42 et 56 espèces respective-
ment pour J₁, J₅, J₁₀ et J₁₇. On note ainsi une nette augmentation entre
J₁ et J₅ associée à une grande simili-
tude (Hₚ faible) entre les biotopes, une diminution de J₅ à J₁₀, une stabili-
sation de J₅ à J₁₀ et une augmentation entre J₁₀ et J₁₇. La végétation des jachères est ainsi largement enrichie par la pré-
\[\text{Évolution des paramètres de répartition de la végétation}

L'évolution de l'indice de diversité (Hₚ) au cours du temps montre des diffé-
rences selon le biotope et l'âge de la ja-
chère (figure 3).

Sous les arbres, on observe une diminu-
tion de la diversité en passant de 1 à
10 ans tandis qu’entre 10 et 17 ans, H
augmente considérablement. La baisse de la diversité de 1 à 10 ans résulte du
developpement de Tephrosia pedicel-
lata et de Schizachyrium nodosulum (dont la contribution au tapis atteint 45 %).
Le relèvement de l'indice impli-
que la contribution de plusieurs es-
pèces au tapis herbacé (tableau VI).

Hors arbre, l'indice varie de 2 à 3,31.
La plus faible valeur est observée à
3 ans (jachère dans laquelle deux es-
pèces seulement contribuent pour plus
de 80% au tapis herbacé).

Les valeurs d'équitéabilité (E) sous et hors couvert sont équivalentes à J₃, puis évo-
luent dans le même sens, avec des va-
leurs plus élevées, sous l'arbre.

Sous l'arbre, la courbe d'équitéabilité suit
la même tendance que celle de l'indice
de diversité (Hₚ).

En dehors de l'arbre, dans la jachère de 17 ans, où deux espèces (Schizachy-
rium nodosum et Andropogon pseudo-
pricus) représentent à elles seules 65 %
de recouvrement hors arbre (tableau VI),
l'équitéabilité est de 0,65. Les plus
faibles valeurs sont observées dans les
jachères de 1 et 10 ans. Elles traduisent
en fait une répartition très irrégulière de
recouvrement entre les espèces et, ainsi,
des phénomènes de forte dominance
[19].

L'examen de la figure 3 montre enfin que
la courbe de diversité (Hₚ) pour la
végétation scaphe est superposable à celles du nombre d'espèces par relevé
et de la richesse spécifique totale.

L'accroissement de la population et la
nécèsité de satisfaire des besoins ali-
mentaires et domestiques toujours crois-
sants conduisent à une augmentation
des surfaces cultivées et à une diminu-
tion, voire à une suppression, du temps
de jachère. Divers solutions sont alors
recherchées afin de diminuer l'empire
foncier des jachères sans perturber
leurs fonctions [20]. Une des stratégies
envisagées est de maintenir des groupes fonctionnels, dont des lignées pour leur
action sur la structure du sol et sur les bi-
lans organiques et minéraux. Ce groupe
can aussi influencer la dynamique des
populations de nématodes, la microflora
et la microfaune du sol, ainsi que la
 qualité et la quantité de la flore herba-
cée.

En effet, la comparaison de la composi-
tion de la végétation herbacée des ja-
chères sous l'arbre et hors de son cou-
vvert nous a permis de mettre en
évidence des différences assez impor-
tantes. Celles-ci se caractérisent par une
discrimination plus ou moins nette des biotopes couverts et découverts ainsi
que des espèces ou groupes d'espèces
inféodées à ces biotopes. Le degré de
discrimination varie avec la durée de
l'abandon culturel. L'arbre gère donc
la structure du peuplement herbacé des ja-
chères.

Le nombre d'espèces d'ombre est tou-
jours plus élevé que celui des espèces
héliophiles, entraînant ainsi une plus
grande diversité (tant sur le plan fonc-
tionnel que sur celui de l'organisation
des groupes) de la strate herbacée sous
l'arbre. À l'opposé, les indices de végé-
tation sont plus faibles pour la végéta-
tion des milieux découverts, ce qui l'on
peut lier à une organisation plus impor-
tante de ces systèmes qui sont donc
homogènes mais plus fragiles dans leurs
rapports écologiques.

On peut s'interroger sur les causes des
différences observées au niveau de ces

| Tableau VI. Recouvrement moyen (%) des espèces dominantes de la végétation herbacée sous et hors couvert (SC et HC) de parcelles de jachère d'âges différents en zone soudanienne |
|-----------------|---|---|---|---|---|---|---|---|---|
| Espèces | 1 | 2 | 3 | 5 | 10 | 17 | 17 | 17 | 17 |
| Schizoch. nodosulum | 13,0 | 62,9 | 31,0 | 51,0 | 12,3 | 54,0 | 21,0 | 61,0 | 10,4 | 37,5 |
| Tephrosia pedicellata | 22,3 | 20,0 | 34,2 | 16,3 | 12,1 | 4,0 | 13,0 | 13,8 | - | - |
| Triumfetta pentandra | 21,0 | - | - | - | 43,7 | 3,0 | 23,0 | - | - | - |
| Cassia obtusifolia | - | - | - | - | - | 6,0 | - | - | - | - |
| E. tennax | - | - | - | - | 23,0 | - | - | - | - | - |
| And. pseudopraecox | - | - | - | - | 5 | 27,1 | 27,2 | - | - | - |
| Eragrostis tenua | - | - | - | - | - | 5 | - | 5,3 | - | - |
| E. tenua | - | - | - | - | - | 5 | - | 5,3 | - | - |
| H. diversifolius | - | - | - | - | - | 19,8 | 4,7 | - | - | - |
| Ip. argentea | - | - | - | - | - | 5,8 | - | 5,9 | 5,0 | - |
| Penn. violacea | - | - | - | - | - | 5,9 | - | 5,0 | - | - |

Sécheresse n° 4, vol. 10, décembre 1999
Sécheresse n° 4, vol. 10, décembre 1999

261

phytocénoses. Il est a priori logique de les corréler avant tout à l'hétérogénéité du milieu générée par la présence de l'arbre dans l'écosystème. En effet, par son système racinaire et la chute des feuilles, la végétation ligneuse contribue à restituer au sol des éléments minéraux perdus par lessivage au cours du cycle cultural et entraînés en profondeur en créant des îlots de fertilité du sol. Elle est le plus souvent à l'origine de la mise en place des foyers de réactivation biologique des sols (changement de microclimat). Par le pouvoir tampon du couvert, la végétation ligneuse atténue aussi la demande évaporative de l'air. L'arbre crée donc de très favorables conditions de développement pour le tapis herbacé. Ainsi, les espèces du couvert, généralement des sciaphytes voire des hygrophytes, sont dans leur grande majorité des dicotylédones (Amaranthaceae, Convolvulaceae, Cucurbitaceae) ou des monocotylédones à feuilles larges (Brachiaria, Commelina). Aussi de nombreuses espèces, même parmi les indifférentes, peuvent (mieux) se développer et contribuer davantage à la formation du tapis herbacé sous l'arbre. La diversité plus forte sous l'arbre suggère alors que la coexistence des espèces est permise grâce à la diversification des niches écologiques et que la communauté a atteint un équilibre compétitif.

Les espèces des biotopes découverts, généralement des xérophytes, appartiennent aux Poaceae, à feuilles étroites et plus ou moins enroulées (Eragrostis). Dans ce biotope, où les conditions de développement de la végétation sont plus contraignantes que sous le couvert des arbres, quelques espèces seulement (2, 3 ou 5) constituent le tapis herbacé. La contribution au tapis des espèces héliophiles est très faible, de l'ordre de 1 % ; il est 10 fois plus élevé pour les espèces d'ombre.

Dans ces jachères, les îlots de fertilité générés par l'arbre et l'atténuation des variations climatiques engendrent une hétérogénéité du milieu qui permet donc de déterminer plus ou moins nettement des groupes écologiques distincts dans chacune des phytocénoses. Cette hétérogénéité est de plus en plus grande selon le milieu, et génère différentes situations topographiques qui correspondent aux milieux de dépression, de pente et de replat (sommet). Mitja [21] indique en effet que l'hétérogénéité du milieu peut influencer la dynamique de la végétation et sa richesse spécifique.

La répartition de la végétation herbacée des jachères est également liée, à l'instar des savanes et forêts claires soudanien-soudanum, à l'existence de deux gradients orthogonaux : le facteur éclairement et le gradient topographique, tous les deux en relation probablement avec le bilan hydrique [11, 14].

Dans une jachère à composante ligneuse, il apparaît donc que l'évolution de la végétation herbacée n'est pas unidirectionnelle mais bidirectionnelle. La végétation sciaphile évolue probablement vers un équilibre compétitif tandis que les plantes héliophiles présentent une diminution d'espèces liée à un processus d'exclusion compétitive.

Dans une zone à vocation agro-pastorale, encore épargnée par la demande foncière mais soumise à une forte colonisation par une population exclusive-ment agricole, il importe de poursuivre les recherches afin de préciser l'importance et la qualité de ce pâturage de jachère dans l'alimentation du cheptel.

Résumé

Cette étude établit la composition de la végétation herbacée sous et hors couvert ligneux de jachères d'âges différents en Casamance, région subhumide située au Sud-Sénégal. Des relevés de végétation sous et à côté des arbres ont été effectués et soumis aux méthodes d'analyse multivariée (AFC, indices de végétation). L'AFC a permis de distinguer les relevés effectués sous le couvert des arbres de ceux de la zone découverte ; le degré de discrimination varie avec l'âge de la jachère. Il existe ainsi un "effet couvert" qui est associé à un cortège floristique caractéristique des différents biotopes. La richesse spécifique et les indices de diversité, également plus importants sous l'arbre, traduisent de meilleures conditions de milieu dans ce biotope que dans la zone découverte. L'évolution de la végétation herbacée des jachères est bi-directionnelle, en relation aux communautés sciaphile et héliophile.

Summary

The specific composition of the herbaceous layer was studied within and outside of the fallow tree cover in Casamance, a subhumid Sudano-Guinean savanna region in Southern Senegal. These fallow plots were arranged in n classes of different ages, i.e. J1, J3, J5, J10 and J17, respectively corresponding to 1, 3, 5, 10 and 17 years after cultivation was abandoned. The floristic data were processed by multivariate analysis methods (CoA, diversity indexes). CoA made a clear distinction between survey data obtained in shady biotopes and those from open areas and the extent of discrimination index varied with the age of the fallows. There was therefore a tree effect on the herbaceous layer. A characteristic flora list was drawn up for each different biotope. The species richness and diversity indexes were substantially higher under the canopy, indicating that the environmental conditions were better than in open areas. The fallow herbaceous vegetation layer evolved in two directions according to the sciophyllous and heliophilic communities.