Effects of the antimalarial drugs ferroquine and artesunate on *Plasmodium yoelii yoelii* gametocytogenesis and vectorial transmission

Kamla Mustfa1, Irène Landau2, Jean-Gabriel Chabaud2, Jacques Chandenier3, Thanh Hai Duong3, Dominique Richard-Lenoble1

1 Faculté de médecine de Tours, service de parasitologie-mycologie-médecine tropicale, 10, boulevard Tonnellé, 37032 Tours Cedex, France

2 Laboratoire de parasitologie comparée, Muséum national d’histoire naturelle de Paris
61 rue Buffon
75231 Paris Cedex 05

3 Laboratoire de Parasitologie-Mycologie-Médecine Tropicale
CHU Bretonneau
2 boulevard Tonnellé
37044 Tours Cedex 09

Abstract
Chemistry still has a role in the management of malaria, alongside the mosquito netting soaked in insecticide that is used increasingly, as we continue to await the long anticipated vaccine. During its cycle, the hematozoon parasite develops through three major periods. The first, malarial infection, corresponds to the intrahepatic development of infective forms from the mosquito vector; this period is not sensitive to treatment and is often asymptomatic. The period of erythrocytic schizogony is the most urgent, and treatment activity is primordial. Finally, the phase of sexual reproduction, when gametocytes develop within the erythrocytes ensures the perpetuation of the species when these reach the blood-feeding female anopheles mosquitoes. The aim of our work was to study the effect on gametocytes of drugs known to be effective on the asexual blood forms of the protozoan and thus the potential repercussions on malaria transmission. This experimental study was conducted with an animal model whose parasite cycle and modes of transmission are close to those of human malaria: *Plasmodium yoelii*, maintained on Swiss mice, with the *Anopheles stephensi* vector (maintained in an animal facility at the National Museum of Natural History in Paris). Two drugs were tested: ferroquine (a chloroquine derivative with a ferrocene molecule at the lateral carbon chain that restores its efficacy against chloroquine-resistant strains) and artesunate (a derivative of artemisinin, from *ginghai*, a Chinese plant also known as *artemisia annua*, or sweet wormwood), a treatment of choice in the combined therapies recommended by WHO. The efficacy of these drugs, prescribed at doses subcurative for the asexual forms, were tested against gametocyte production, quantitatively by counting them in the blood and qualitatively by counting the quantity of oocysts developed on the mosquito’s midgut, which are indicators of gametocyte activity. The mice that were parasite-infected and then treated served as their own controls: lots of 30 mosquitoes fed on each mouse before treatment and then 90 minutes and 5 hours after treatment. Quantitatively, the comparison of the blood parasite level and the gametocyte index shows that treated mice had a higher level of circulating gametocytes than untreated parasite infested mice, regardless of drug or dose (5 or 10 mg/kg). For artesunate at 5 mg/kg, we noted that the blood gametocyte level was almost double that of the controls. On the other hand, qualitatively, the first results obtained with optical and electronic microscopy showed morphologic alterations of the circulating gametocytes (pigment clumping and lateralisation within red blood cells) and reduced infectivity of the gametocytes for the mosquitoes that fed at 1 and 5 hours after treatment. We were able to demonstrate statistically that the infectivity of gametocytes, measured by the quantity of oocysts counted in the mosquito midgut, was reduced by 70% for those treated with ferroquine and by 85% for those from mice treated by artesunate. Complementary studies will seek to specify the populations (age) of gametocytes damaged by treatment and the importance and nature of their morphologic alterations.

Key words: artesunate; ferroquine; gametocyte; *Plasmodium yoelii yoelii*; vectorial transmission.

To cite this article: Mustfa K, Landau I, Chabaud AG, Chavatte JM, Chandenier J, Duong TH, Richard-Lenoble D. Effects of the antimalarial drugs ferroquine and artesunate on *Plasmodium yoelii yoelii* gametocytogenesis and vectorial transmission. Sante 2011 ; 21 : 133-142. doi : 10.1684/san.2011.0261
Résumé

Actions de la ferroquine et de l’artésunate sur la gamétocytogénèse et la transmission vectorielle de Plasmodium yoelii yoelii

La chimie trouve encore sa place dans la prise en charge du paludisme entre la vaccination très attendue et la moustiquaire imprégnée d’insecticides de plus en plus utilisée. Au cours de son cycle, l’hématozoaire évolue en trois grandes périodes : l’impaludation correspondant au développement intra-hépatique des formes infectantes venues du moustique vecteur, cette période est peu sensible aux thérapeutiques mais souvent asymptomaticque, la période de la multiplication intra-érythrocytaire est la plus bruyante et l’action thérapeutique primordiale, enfin, la phase sexuée du parasite où les gamétozytes développés dans les érythrocytes assureront la pérennité de l’espèce chez le moustique anophèle femelle hématophage. Le but de notre travail est d’étudier l’action de médicaments classiquement efficaces sur les formes sanguines, au niveau des formes sexuées (gamétozytes) du parasite et ainsi éventuellement sa répercussion sur la transmission du paludisme. Il s’agit d’une étude expérimentale sur un modèle animal dont le cycle parasitaire et les modes de transmission du parasite sont proches de ceux du paludisme humain. *Plasmodium yoelii* est entretenu sur souris Swiss, le cycle étant assuré par le vecteur Anopheles stephensi et maintenu en animalerie avec l’aide du Muséum national d’histoire naturelle de Paris. Deux molécules ont été testées : la ferroquine (association de la chloroquine à un noyau ferrocène lui rendant toute son efficacité sur les souches chloroquinorésistantes) et l’artésunate (dérivé de l’artémisine issue d’une plante d’origine chinoise, le qinghao et une molécule de choix dans les associations thérapeutiques conseillées par l’OMS). Ces molécules prescrites à doses infracuratives pour les formes axétyques ont été testées en termes d’efficacité sur le parasite, quantitativement par la mesure de la gamétozytémie et qualitativement en comptant la quantité d’oocystes (développés sur l’estomac du moustique) témoins de l’activité des gamétozytes. La souris parasitée et traitée est son propre témoin : des lots de 30 moustiques se gorgent sur elle avant le traitement et une heure 30 et cinq heures après ce même traitement. Au cours de l’impaludation, les oocystes produisent des gamétozytes circulants (amas de pigments, pruinescence) et l’artésunate assurera la prévention de la transmission. Nous avons pu constater que l’infectivité des gamétozytes, mesurée par la quantité d’oocystes comptés sur l’estomac du moustique, était respectivement diminuée de 70 % pour celles traitées par la ferroquine et de 85 % pour ceux issus de souris traitées par l’artésunate. Des études complémentaires chercheront à préciser les populations (âge) de gamétozytes atteintes par les thérapeutiques et l’importance et la nature des altérations morphologiques des gamétozytes traités.

Mots clés : artésunate ; ferroquine ; gamétozyte ; Plasmodium yoelii yoelii ; transmission vectorielle.

For curative and prophylactic treatment drugs have a primary role in the fight against malaria for individuals and groups, including mosquito nets impregnated with insecticides [1] and intermittent treatment for pregnant women and young children until vaccination becomes available. The priority in the choice of drugs to be developed depends on their efficacy in clinical emergencies, including the development of asexual forms of erythroocytes. On the other hand, it is necessary to pursue research into the efficacy of drugs on other parasitic forms, in particular intrahepatic asexual forms and sexual expression ensuring the transmission and durable maturation of plasmodial species in the mosquito, *i.e.* gamétozytes. Many studies undertaken to study transmission have therefore depended on breaking the parasite cycle by using antimalarials at subcurative doses, which increases the damage to parasites producing the gamétozytes. Some of these studies have demonstrated that subcurative doses increase the gamétozytic index (number of gamétozytes/number of parasites). Buckling *et al.* [2]...
reported that gametocytogenesis in mice infected with *Plasmodium chabaudi* 4-6 days post-treatment with a subcurative dose of chloroquine (12 mg/kg) was 2.5 times higher than that of the control group. However, other studies on human Plasmodia *Plasmodium falciparum* and *Plasmodium vivax* and a murine Plasmodium, *Plasmodium vinckei petteri*, demonstrated no increase in gametocytogenesis following treatment with chloroquine or quinine [3-6]. Various studies have been performed to study the infectivity of gametocytes in mosquitoes following treatment with subcurative doses. A significant decrease in infectivity of gametocytes of *P. v. petteri* was reported in mosquitoes fed on mice one hr (H1) post-treatment [3] and five hours (H5) later in *Plasmodium cynomolgi* treated with CDRI 80/53 (elubaquine: a new 8-aminoquinoline analogue of primaquine). Oocyst development was inhibited at a dose of 3.75 mg/kg of CDRI80/53, indicating a gametocytocidal action of the compound [7].

Ramkaran and Peters [8] reported enhancement of the short-term effects (H12 post-treatment) of chloroquine on the infectivity of gametocytes with the chloroquine-resistant strain of *Plasmodium berghei* (NK65) and with the chloroquine-sensitive strain of *P. chabaudi* [9], whereas no enhancement of infectivity was found for gametocytes of a drug-sensitive strain of *P. v. petteri* [3].

Our aims were to measure the eventual effectiveness of known treatments and of those under development on gametocytogenesis and to follow the effects on transmission by measuring the infectivity of gametocytes in mosquitoes by enumeration of the number of oocysts found in the mosquito stomach.

Aims of study

The aims of the study were to evaluate quantitatively and qualitatively the effects of subcurative doses of ferroquine and artesunate on the gametocytogenesis of rodent *Plasmodium yoelii yoelii* at H0, H1h30, H5, H24 and H48 post-treatment, and transmission to mosquitoes at H0, H1h30 and H5 after drug administration.

Materials and methods

Biological material (figure 1)

Parasites

We used *P. y. yoelii* [10], strain 17X, isolated from the rodent *Thamnomys rutilans* in the Central African Republic in 1969 and cloned (clone 1.1), for its high production of gametocytes. It was maintained in Alseveer’s solution at - 80 °C by the Laboratory of Comparative Parasitology of the Muséum National d’Histoire Naturelle (Paris).

Rodents (mice)

Experiments were carried out on female Swiss mice, 25 g body weight (Janvier laboratory). The mice were maintained in cages in an animal research facility and fed a special diet.

Vector

Anopheles stephensi of Indian origin was used as vector; the complete cycle in this mosquito has been maintained continuously in the insectarium of the Muséum national d’histoire naturelle de Paris at 25 °C and relative humidity of 70-80%. All mosquitoes used in the experiments were 5-7 days old.

Methods

Infection of mice

Throughout the entire experimental setup mice were infected intraperitoneally with *10⁶* parasitized (*P. y. yoelii*) red blood cells (blood was collected from infected mice following parasitemia and smeared as thin blood films on clean microscope slides. Smears were stained with Giemsa stain in phosphate buffer.

Figure 1. Different elements of the experimental cycle used to study the therapeutic action ferroquine and artesunate on gametocytes and malaria transmission.

Figure 1. Différents éléments du cycle expérimental utilisé pour l’étude de l’action des thérapeutiques : ferroquine et artésunate, sur les gamétocytes et la transmission du paludisme.

Materials : Material; *Modèle expérimental :* Experimental model; *Souris Swiss femelle :* Female Swiss mouse; *Thérapeutiques testées :* Tested drugs.
Treatment of mice: drugs

The drugs used in the present study were administered at subcutaneous doses, which fail to kill all the parasites, but some surviving parasites may suffer ill effects and be stimulated to produce gametocytes. Subcutaneous therapy is common as partially protective prophylaxis [11]. We studied the effects of two antimalarials, ferroquine and artesunate (Sanofi Aventis), on the development of gametocytes in the bloodstream and their eventual infectivity in the mosquito vector:

- ferroquine is a chloroquine molecule whose side chain has been replaced by a ferrocene nucleus [12]; this ferrocene nucleus facilitates the penetration of the molecule into red blood cells and maintains contact with the parasite, thereby ensuring the toxic action of chloroquine on it. Ferroquine is equally active on CQ-sensitive and CQ-resistant P. falciparum laboratory strains and field isolates [13];
- artesunate is a derivative of artemisinin extracted from natural Qinghao (chinese herb: Artemisia annua). This strong schizonticide has a short half-life (20-25 minutes). The artemisinin derivatives have a mode of action involving the iron-catalyzed generation of a carbon-centered free radical, followed by the alkylation of malaria-specific proteins [14]. Each drug was administered subcutaneously. (chinese herb: Artemisia annua).

Batch Drugs Dose (mg/kg)

B 1 Ferroquine 5
B 2 Ferroquine 10
B 3 Artesunate 5
B 4 Artesunate 10
B 5 Untreated -

Table 1. Gametocytogenesis experiment: drugs and doses used for each batch.

Tableau 1. Expérience de gamétocytogenèse : traitements et doses utilisées pour chaque lot de souris.

Mosquito infection

A sufficient level of parasitaemia (1-3%) was obtained on day 3 to start the mosquito infectivity experiments (H0). Mice were anaesthetized lightly using one part Rompun® and two parts Vetalar®, diluted to 50% with distilled water (50 µL), and placed on the mosquito cages exposing them to Anopheles mosquito bites (30 mosquitoes for each cage). Mice were their own controls during the experiment (H0, H1h30, and H5). The mosquitoes were allowed to feed for 30 min before treatment administration, and again for 30 minutes on the same rodent at H1h30 and H5 after treatment in the same mode; unfed mosquitoes were removed and the remainder maintained at 24°C until dissection eight days after the blood meal. The mid-gut was removed and oocysts counted. Parasitaemia and gametocytaemia were enumerated on Giemsa-stained thin blood smears from mouse peripheral blood.

Parasite evaluation

Tail blood was smeared in thin blood films, fixed with methanol and stained with a solution of 10% Giemsa stain in phosphate buffer (pH 7.4) for 45 min. One thousand red blood cells were examined to determine the percentage of infected erythrocytes and subsequent determination of parasitaemia and gametocytaemia as follows:

- parasitaemia (P): number of red blood cells infected (asexual forms) per 100 red blood cells;
- gametocytaemia (G): number of gametocytes (sexual forms) per 100 red blood cells infected;
- gametocytaemia index (GI): the gametocytaemia to parasitaemia ratio. Additionally, the morphology of gametocytes was studied through the examination of some elements by optical and electronic microscopy.

Statistical analysis

The data were analyzed using the T test and Fisher test, the level of significance being set at 0.05.

Results

Effects of ferroquine and artesunate on gametocytaemia and gametocytojenesis

Parasitaemia: the effects of ferroquine and artesunate on parasitaemia did not differ between the five batches of mice (B1, B2, B3, B4 and B5) on day 3 post-infection at H0 (figure 4A). Parasitaemia reduced one and half hours (H1h30) post-treatment in all batches except for the control batch and the batch treated with 5 mg/kg ferroquine. The reduction in parasitaemia of the three groups was slight except for the group treated with...
10 mg/kg ferroquine, which decreased by almost 15% compared to H0 before treatment. The parasitaemia of the control group increased by almost 45%. Parasitaemia reduced in the four-treatment batches five hours post-treatment (H5), as at H1h30. The reduction was slight, except in the group treated with 10 mg/kg artesunate where it decreased by 14% compared with H0 prior to treatment. The parasitaemia of the control batch increased by 35%.

The 10 mg/kg ferroquine dose was thus effective against the asexual stage at H1h30 while artesunate at the same dose was effective at H5.

Gametocytaemia: gametocytaemia at H1h30 compared with H0 prior to treatment increased in all the batches treated with ferroquine, artesunate (5 mg and 10 mg/kg) and in controls (figure 4B). The increase in gametocytaemia was almost two-fold higher compared with H0 at the 5 mg/kg artesunate dose, whereas with the other batches treated with 5 and 10 mg/kg ferroquine and 10 mg/kg artesunate the increase in gametocytaemia was approximately half that of H0 in every batch. The increase was significant only with 5 mg/kg artesunate ($P < 0.04$). In contrast gametocytaemia in the controls decreased slightly.

At H5 gametocytaemia was increased in all treatment groups, including the control group. The gametocytaemia level of the batch treated with 5 mg/kg artesunate increased more than 1.5 fold compared to H0 (significant, $P < 0.02$), whereas the increase in gametocytaemia of the two batches treated with 5 and 10 mg/kg ferroquine was a quarter that at H0. The gametocytaemia levels of the batches treated with 10 mg/kg artesunate and controls decreased almost 1.5-fold compared to H0, whereas gametocytaegesis increased in all the batches of treated mice five hours post-treatment. The increase was almost two-fold for the group treated with 5 mg/kg artesunate (significant, $P = 0.006$) and approximately 1.5-fold for the other groups treated with 10 mg/kg artesunate, 5 and 10 mg/kg ferroquine, compared with H0 before treatment for every group.

The gametocytaegesis was thus higher with 5 mg/kg artesunate both at H1h30 and at H5. At H48, gametocytaegesis decreased for all treatments including the controls. On the other hand, morphological changes were seen from the first hour of treatment until H24 on optical and electronic microscopy (data not shown) (figure 5).

Effects of ferroquine and artesunate on gametocyte infectivity

Mice for each experiment were exposed to mosquitoes (30 mosquitoes) at H0 before administration of drugs and after 30 minutes of feeding. The mice were treated with the two drugs (H1h30 and H5). The number of oocysts reduced in all mosquitoes, regardless of the drug used and the dose; the inhibitory effect was significant. With 5 mg/kg ferroquine, the reduction in oocyst numbers was about

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Batches</th>
<th>Drugs</th>
<th>Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1\a</td>
<td>Batch 1</td>
<td>Ferroquine</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Batch 2</td>
<td>Ferroquine</td>
<td>5</td>
</tr>
<tr>
<td>2\a</td>
<td>One batch</td>
<td>Artesunate</td>
<td>5</td>
</tr>
<tr>
<td>3\b</td>
<td>One batch</td>
<td>Ferroquine</td>
<td>10</td>
</tr>
<tr>
<td>4\b</td>
<td>One batch</td>
<td>Artesunate</td>
<td>10</td>
</tr>
</tbody>
</table>

\a Drugs administered orally.

\b Drugs administered subcutaneously.
60% at H1h30 compared to H0 before treatment, and 80% ± 1 at H5. A comparable reduction was observed with 10 mg/kg ferroquine: 70% ± 5 at H1h30 and 90% ± 2 at H5. Similarly, 5 mg/kg and 10 mg/kg artesunate resulted in decreases of 80% ± 3 at H1h30 for both doses and 90% ± 3 and 98% ± 2 at H5, respectively, compared to H0 before treatment for all groups. There were no differences between the two drugs and doses. The percentage of mosquitoes infected decreased moderately between the three feeds, as indicated in table 4, the differences were statistically non-significant.

Our results demonstrated an increase in gametocytogenesis of *P. y. yoelii* following subcurative doses (5 mg and 10 mg/kg) of ferroquine and artesunate at H1h30 and H5 post-treatment. Subcurative doses of ferroquine and artesunate inhibited infectivity (transmission) of *P. y. yoelii*, both at H1h30 and at H5 post-treatment. We found no significant differences between doses or treatments.

Discussion

Many factors influence the transmission of malaria, such as impact point of the drug, dose, strain and time of action in vivo or in vitro, species of host infected etc., and the results reported by others may seem contradictory [2, 3]. The studies on production and infectivity of gametocytes of rodent *Plasmodium* are difficult to standardize and interpret. The parasitaemia levels (whether near or during a crisis) have an essential inhibitory role due to the release of toxic substances [15] and gametocytogenesis may vary from one individual mouse to another. The experimental conditions also vary in different laboratories, thus generating contradictory results and thereby blurring transmission experiments.

Gametocytogenesis, which was studied quantitatively by evaluating the number of gametocytes post-treatment, increased at H1h30 and H5 post-treatment (figure 4B). Buckling and Read [16] reported augmentation of gametocytogenesis with murine plasmodium *P. chabaudi* (chloroquine-sensitive lines) and in human plasmodium. This is in agreement with our in vivo results with *P. y. yoelii*, which showed that subtherapeutic treatment with 5 mg/kg and 10 mg/kg ferroquine and artesunate increased gametocytogenesis H1h30 and H5 following treatment. The same results were found in vivo by Beavogui et al. [17], Buckling et al. [18], Hogh et al. [4] and Puta and Manyando [19] with sulfadoxine-pyrimethamine, and in vitro with eight antimalarial drugs by Peatey et al. [20].

In contrast to our results, Gautret et al. [3] showed that subcurative doses of chloroquine had no effect on gametocytogenesis of *P. v. petteri* during the 3 days following the end of treatment. The difference in behaviour among murine *Plasmodium* species related to specific intrinsic characteristics was clearly demonstrated by Gautret et al. (1997), following administration of phenylhydrazine to mice, a drug that induces strong reticulocytocytogenesis and haemolytic anaemia. There was an increase in gametocyte numbers in mice infected with *P. chabaudi* but not in those infected with *P. v. petteri*, demonstrating that the gametocytogenesis of two species of *Plasmodium* was triggered differently when the parasites developed in the reticulocytes.

Our results pertaining to the effects of artesunate on gametocytogenesis disagree with the results of Pukrittayakamee et al. [21] which indicated that artesunate is a potent inhibitor of gametocytogenesis of *P. falciparum* with several subcurative doses daily (3.3 mg/kg on the first day and then 1.65 mg/kg for a further 6 days), but we did not compare the number of gametocytes at the same times post-treatment in the same species, or with the same time periods. The heterogeneity of gametocytocytogenesis (age, transmission power) complicates interpretation of gametocytocytogenesis counts. The different gametocyte stages remain to be studied. It was necessary to evaluate qualitatively the role of gametocytes (infectivity) post-treatment.

Our results demonstrated the reduction in infectivity for both drugs and doses. Reductions in oocyst count were slightly different according to the drug and dose at H1h30 and at H5: oocyst numbers reduced at H1h30 and H5 post-treatment with 5 mg/kg ferroquine were reduced by 60% and 80% ± 1, and 80% ± 3 and 90% ± 3 with artesunate compared to H0. With the 10 mg/kg dose at H1h30 and H5, oocyst numbers were reduced by 70% ± 5 and 90% ± 2 post-treatment with ferroquine and by 80% ± 3 and 98% ± 2 with artesunate compared to H0 (table 4). Comparable results were observed in in vivo studies with *P. falciparum* by Chotivanich et al. [22] who reported that artesunate had a potent effect on gametocyte infectivity in *A. dirus*. At a low concentration (1.5 ng/mL), 90% inhibition of infectivity was observed with both quinine and primaquine, but at relatively high concentrations the inhibition of infectivity in vivo by quinine was 67% and by primaquine it was 44%. According to the results of [23], artesunate at a total dose of 100 mg over 6 days inhibited the infectivity of *P. falciparum* gametocytes. Chen et al. [24] and Price et al. [25] stated that artemisinin derivatives can influence the infectivity of gametocytes of *P.
Figure 4. Development of parasitaemia (A: ---) and gametocytaemia (B:) within 48 hours after treatment with ferroquine (FQ) and artesunate (AS) compared to controls. The X-axis represents time and the Y-axis the % of parasites (A) and the % of gametocytes (B) exposed.

Figure 4. Développement de la parasitémie (A: ---) et de la gamétocytémie (B:) 48 heures après le traitement à la ferroquine (FQ) et l’artésunate (AS) comparé aux contrôles. L’axe des X représente le temps et l’axe des Y le % de parasites (A) et le % de gamétocytes (B).
P. falciparum by more effective blocking of the transmission of *P. falciparum* malaria than mefloquine. Puri and Dutta [7] found a drastic reduction in mosquito infectivity and oocyst development post-treatment of *P. cynomolgi* with elubaquine at subcurative doses of 0.63, 1.25, 1.87 and 2.5 mg/kg in rhesus monkeys, thus demonstrating a dose-dependent effect. Complete inhibition was obtained at H5 post-treatment with doses of 3.75 and 5 mg/kg, the mature gametocytes subsequently becoming non-infective to mosquitoes. The percentage of inhibition of the infectivity of gametocytes of *P. v. petteri* in mosquitoes at H1 and H12 post-treatment with chloroquine (5 mg/kg) was about 40% and 60%, respectively, while there was no significant effect on transmission H12 post-treatment with 1 mg/kg chloroquine [3]. Comparable results were reported by Klein et al. [26], who observed a temporary inhibition of transmission of gametocytes of human plasmodial parasite *P. vivax* by *Anopheles darlingi* at H4 post-treatment with 600 mg/kg chloroquine. Ichimori et al. [27] with *P. yoelii nigeriensis* and Gautret et al. [9] with *P. chabaudi* showed an increase in mosquito infectivity after treatment with chloroquine. As mentioned above, our study revealed the presence of damaged gametocytes (morphological changes and pigment clumping) after treatment (data not shown), and Kombila et al. [28] previously observed that the gametocytes of *P. falciparum* were deformed 3 hours after treatment with artemether.

Our results show that subcurative doses of ferroquine and artesunate have an effect on gametocytogenesis of *P. y. yoelii* following treatment, especially 5 mg/kg artesunate at

Table 3. Effects of ferroquine and artesunate on gametocytogenesis of *Plasmodium yoelii yoelii*.

<table>
<thead>
<tr>
<th>Gametocytogenesis</th>
<th>Mean ± SD</th>
<th>Ferroquine (mg/kg)</th>
<th>Artesunate (mg/kg)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Time post-treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H0</td>
<td>2.63 ± 2.38</td>
<td>1.72 ± 0.98</td>
<td>1.07 ± 1.1</td>
<td>2.64 ± 2.07</td>
</tr>
<tr>
<td>H1h30</td>
<td>3.13 ± 2.56</td>
<td>2.68 ± 2.72</td>
<td>3.28 ± 2.93</td>
<td>1.55 ± 2.28</td>
</tr>
<tr>
<td>H5</td>
<td>3.73 ± 7.37</td>
<td>2.51 ± 1.89</td>
<td>3 ± 2.52</td>
<td>3.61 ± 4.75</td>
</tr>
<tr>
<td>H24</td>
<td>0.99 ± 3.17</td>
<td>1.98 ± 5.66</td>
<td>2.78 ± 3.14</td>
<td>3.05 ± 4.15</td>
</tr>
<tr>
<td>H48</td>
<td>0.81 ± 0.93</td>
<td>0.22 ± 0.32</td>
<td>0.31 ± 0.39</td>
<td>0.86 ± 1.67</td>
</tr>
</tbody>
</table>

Figure 5. Example of an electron microscopy image of the different types of morphologic changes observed on gametocytes from the mice treated by ferroquine.

Figure 5. Exemple d’une image en microscopie électronique sur les différents types d’altérations morphologiques observés sur des gamétocytes issus de souris traitées par la ferroquine.

Microscopie électronique : Electronic microscopy; Alterations des mitochondries et aspect feuilleté enroulé des membranes parasites; Regroupement des grains de pigment en mottes ou amas; Le parasite semble s’extérioriser du globule rouge; Mitochondria alterations; Clamping pigment; Plasmodia extrusion from red cell.
In our experiments with *P. y. yoelii*, a general reduction in infectivity of about 60-80% at H1h30 and 75% (73%-100% (98%)-100% at H5 post-treatment was observed (table 4), as reported by others [7, 22].

Conclusion

We performed an *in vivo* study of the effects of artesunate and ferroquine on the gametocytogenesis of the rodent malaria parasite *P. y. yoelii* and its vector *A. stephensi*. We also studied the effects of the same drugs on the infectivity of gametocytes. Subcurative doses (5 and 10 mg/kg) of both ferroquine and artesunate increased gametocytogenesis at H1h30 and H5 post-treatment, the most effective being 5 mg/kg artesunate. We also observed a decrease in the infectivity of gametocytes of *P. y. yoelii* in mosquitoes both at H1h30 and H5 post-treatment. These results should be confirmed with a study on a revised distribution of the different gametocyte stages and the transmission stages from gametocyte to oocyst development in the mosquito. The number of gametocytes post-treatment was not directly correlated with their infectivity in mosquitoes. Studies comparing the effects of ferroquine and artesunate on gametocytogenesis and on the infectivity of gametocytes have to be performed with several dosages and strains (resistant and sensitive) over longer periods.

Table 4. Effects of ferroquine and artesunate on oocyst development of *Plasmodium yoelii yoelii* in anopheles.

Tableau 4. Effet de la ferroquine et de l’artesunate sur le développement des oocystes de Plasmodium yoelii yoelii chez l’anophèle.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doses</th>
<th>Time after drug administration</th>
<th>Parasitaemia (mean)</th>
<th>Gametocytal (mean)</th>
<th>No. of oocysts (mean)</th>
<th>Mosquitoes infected (%)</th>
<th>Oocyst reduction compared to H0 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1 : FQ 5mg/kg</td>
<td>1.a</td>
<td>H0</td>
<td>2.5</td>
<td>4.7</td>
<td>5.52</td>
<td>61.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H1h30</td>
<td>3.6</td>
<td>3.6</td>
<td>1.67</td>
<td>52.38</td>
<td>70 (P = 0.158)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H5</td>
<td>2.6</td>
<td>5.0</td>
<td>1.48</td>
<td>47.62</td>
<td>73 (P = 0.066)</td>
</tr>
<tr>
<td></td>
<td>1.b</td>
<td>H0</td>
<td>2.6</td>
<td>3.8</td>
<td>37.2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H1h30</td>
<td>2.4</td>
<td>4.30</td>
<td>15</td>
<td>80</td>
<td>60* (P = 0.043)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H5</td>
<td>2.2</td>
<td>7.29</td>
<td>7.2</td>
<td>70</td>
<td>81* (P = 0.001)</td>
</tr>
<tr>
<td>Exp 2 : AS 5mg/kg</td>
<td>H0</td>
<td>3.3</td>
<td>2.3</td>
<td>11.7</td>
<td>83.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1h30</td>
<td>3.3</td>
<td>1.4</td>
<td>2.0</td>
<td>53.76</td>
<td>83* (P = 0.0001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>2.1</td>
<td>1</td>
<td>0.9</td>
<td>45.88</td>
<td>93* (P = 0.0001)</td>
<td></td>
</tr>
<tr>
<td>Exp 3 : FQ 10mg/kg</td>
<td>H0</td>
<td>0.6</td>
<td>3.6</td>
<td>16.32</td>
<td>89.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1h30</td>
<td>0.4</td>
<td>0</td>
<td>5.65</td>
<td>52.94</td>
<td>65* (P = 0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>0.5</td>
<td>0</td>
<td>1.33</td>
<td>33.33</td>
<td>92* (P = 0.0001)</td>
<td></td>
</tr>
<tr>
<td>Exp 4 : AS 10mg/kg</td>
<td>H0</td>
<td>0.9</td>
<td>3.8</td>
<td>18.7</td>
<td>85.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1h30</td>
<td>0.95</td>
<td>0.8</td>
<td>3.1</td>
<td>56.52</td>
<td>83* (P = 0.011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>0.95</td>
<td>0.7</td>
<td>0.4</td>
<td>29.17</td>
<td>98* (P = 0.001)</td>
<td></td>
</tr>
</tbody>
</table>

*Oocyst count: number of oocysts per mosquito midgut; FQ: ferroquine; AS: artesunate; *statistically significant.*

H1h30 and H5. In our experiments with *P. y. yoelii*, a general reduction in infectivity of about 60-80% at H1h30 and 75% (73%)-100% (98%) at H5 post-treatment was observed (table 4), as reported by others [7, 22].
(H24, H48) post-treatment and to explore the relationships between gametocyte development stages and infectivity.

Acknowledgements

This study is the result of collaboration between The Department of Parasitology, Tropical Medicine Faculty of Medicine of Tours (France) and The Laboratory of Comparative Parasitology, Museum national d’histoire naturelle de Paris (France). We thank J.-M. Chavatte, F. Gonnet, K. Mengue M. Ngou and C. Randier and the staff of the Department of Mycology-Parasitology and Tropical Medicine of Bretonne University-Hospital, Tours (France).

References

