Review article

Epileptic Disord 2015; 17 (1): 1-11

Neuroimaging in neonatal seizures

Lauren C Weeke, Linda GM Van Rooij, Mona C Toet, Floris Groenendaal, Linda S de Vries

Department of Neonatology, Wilhelmina Children’s Hospital, UMC Utrecht, Utrecht, The Netherlands

Received June 26, 2014; Accepted January 03, 2015

ABSTRACT – Seizures are the most common sign of neurological dysfunction in full-term neonates, with an incidence estimated at 0.15–3.5/1,000 live births. Neonatal seizures often reflect severe underlying brain injury and are associated with high rates of mortality and morbidity. Prognosis is primarily determined by the nature, site and extent of the underlying aetiology, making accurate diagnosis and identification of associated brain lesions essential. Data on neuroimaging in newborns presenting with seizures is limited and most studies report on MRI findings in infants with a specific underlying problem, such as hypoxic-ischaemic encephalopathy, stroke or metabolic disorders. The aim of this review is to discuss the spectrum of neuroimaging findings in full-term newborns presenting with seizures, divided into subgroups with different underlying aetiologies. A standard neonatal MRI protocol is presented.

Key words: neonatal seizures, neuroimaging, MRI, ultrasound, CT, diffusion weighted imaging

Seizures occur more often during the neonatal period than in any other period of life and have a variety of underlying aetiologies. The incidence varies between 0.15 and 3.5 per 1,000 live births, with higher rates in preterm infants. It also depends on the threshold for using continuous amplitude-integrated or standard electroencephalography (aEEG) monitoring (Ronen et al., 2007). In previous studies, the mortality has been reported to be as high as 40%, but in more recent studies the mortality has come down to 21% (Mastrangelo et al., 2005) and even 7% (Tekgul et al., 2006). However, in contrast to this increase in survival, the prevalence of long-term neurodevelopmental sequelae in survivors has been reported to be about 30% (Bergman et al., 1983). In a more recent study, 70 (66%) of 106 preterm and full-term infants admitted to a neonatal intensive care unit (NICU) had an adverse neurological outcome. Six variables were identified as the most important independent risk factors. Neuroimaging was one of these six variables, but only cranial ultrasound (cUS) was used (Pisani et al., 2009). Aetiologies associated with a poor outcome include cerebral dysgenesis, severe hypoxic-ischaemic encephalopathy (HIE), metabolic disorders, and infection of the central nervous system (CNS). Conversely, infants with focal infarction, transient metabolic disturbances, or idiopathic seizures have been reported to have a favourable outcome.
Most NICUs around the world use cUS as the method of first choice. Computed tomography (CT) is now less commonly used and should only be performed in an infant who may acutely need neurosurgical intervention. Magnetic resonance imaging (MRI) is increasingly used and recognised as the best imaging modality. The Vermont Oxford neonatal encephalopathy registry showed that 22.7% of infants admitted with neonatal encephalopathy still had a CT scan and almost two thirds (65%) had an MRI during the neonatal period (Barnette et al., 2014). In this population, admitted between 2006 and 2010, 67% received antiepileptic medication during their stay in the NICU. These imaging data are in agreement with data from Tekgul et al. (2006) who studied 89 full-term infants with neonatal seizures. In this study, 82% had at least one MRI scan, whereas 18% only had a CT scan.

Several studies have shown that in the full-term infant, HIE is by far the most common aetiology, followed by intracranial haemorrhage (ICH) and stroke (table 1). These studies were mostly performed before the introduction of therapeutic hypothermia and recent studies have shown that neonatal seizures are less common and better controlled in infants with moderate HIE, treated with hypothermia (Low et al., 2012; Srinivasakumar et al., 2013). Transient metabolic disturbances or inborn errors of metabolism, infection of the CNS, cerebral dysgenesis, and genetic disorders are less common underlying aetiologies for neonatal seizures. Some of these infants may present with encephalopathy and are referred to as “HIE mimics”. Neuroimaging may help to diagnose an underlying problem, for instance polymicrogyria in Zellweger syndrome, which is important for genetic counselling. For those infants who die during the neonatal period and are too unstable to be transported to the MRI unit, a post-mortem MRI should be considered, especially when there is no permission for autopsy. The value of a post-mortem MRI has been shown by several groups (Griffiths et al., 2005; Nicholl et al., 2007). The number of infants with unknown aetiology is decreasing, as lesions that may not be recognised by cUS or CT are identified by MRI, but also because of advances made in genetics (Weckhuysen et al., 2012; Weckhuysen et al., 2013).

Data on neuroimaging in newborns presenting with neonatal seizures are scarce and most studies report MRI findings in a specific group of infants, with a diagnosis of either HIE, stroke or metabolic disorders (Leth et al., 1997; Tekgul et al., 2006). The aim of this review is to discuss the spectrum of neuroimaging findings in full-term infants with neonatal seizures with different underlying aetiologies. Examples of cUS and MRI performed during the first week after birth in infants presenting with seizures discussed below are presented in figures 1 and 2.

Hypoxic-ischaemic encephalopathy

Several studies have been reported in the literature concerning different patterns of injury in relation to HIE. Two main patterns of injury can be recognised. The first one predominantly affects the central grey nuclei (ventrolateral thalami and posterior putamina) and perirolandic cortex, bilaterally. Associated involvement of the hippocampus and brain stem is not uncommon. This pattern of injury (basal ganglia-thalamic) is most often seen following an acute sentinel event, for instance, a ruptured uterus, placental abruption or a prolapsed cord (Miller et al., 2005; Okerefor et al., 2008), and is also referred to as a pattern seen after “acute near total asphyxia”. When MRI is performed during the first week, diffusion weighted imaging (DWI) may highlight the abnormalities, which

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIE</td>
<td>40%</td>
<td>37.1%</td>
<td>28.6%</td>
<td>40%</td>
<td>46%</td>
</tr>
<tr>
<td>ICH</td>
<td>17%</td>
<td>4.8%</td>
<td>17%</td>
<td>18%</td>
<td>12.2%</td>
</tr>
<tr>
<td>Stroke</td>
<td>18%</td>
<td>11.3%</td>
<td>-</td>
<td>1 case</td>
<td>13.5%</td>
</tr>
<tr>
<td>Infection</td>
<td>3% (CNS only)</td>
<td>9.7%</td>
<td>7.2% (+sepsis)</td>
<td>20% (+ sepsis)</td>
<td>7.6% (+sepsis)</td>
</tr>
<tr>
<td>Cerebral dysgenesis</td>
<td>5%</td>
<td>11.3%</td>
<td>4.5%</td>
<td>10%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Metabolic disorders</td>
<td>1%</td>
<td>11.3%</td>
<td>10.7%</td>
<td>19% (including hypoglycaemia)</td>
<td>9% (including hypoglycaemia)</td>
</tr>
<tr>
<td>Unknown/ idiopathic</td>
<td>12%</td>
<td>1.6%</td>
<td>8.9%</td>
<td>14%</td>
<td>6.3%</td>
</tr>
</tbody>
</table>

HIE: hypoxic-ischaemic encephalopathy; ICH: intracranial haemorrhage.
first become apparent by the end of the first week on conventional imaging (Bednarek et al., 2012).

The second pattern is referred to as the watershed (WS), a predominant pattern of injury seen following “prolonged partial asphyxia”. The vascular WS zones (anterior-middle cerebral artery and posterior-middle cerebral artery) are involved, affecting the white matter and in more severely affected infants, also the overlying cortex. The lesions can be uni- or bilateral, posterior and/or anterior (Harteman et al., 2013). Although loss of the cortical ribbon and therefore the grey-white matter differentiation can be seen on conventional MRI, DWI highlights the abnormalities and is especially helpful in making an early diagnosis (table 2). More widespread punctate lesions in the white matter (PWML) have also been reported within the HIE population. Li et al. (2009) found these PWML in 23% of their infants with neonatal encephalopathy and pointed out that infants with this type of injury had a significantly lower gestational age at birth with a milder degree of encephalopathy and fewer clinical seizures relative to other newborns in their cohort, who were diagnosed to have the two more common patterns of injury. This pattern of brain injury is also seen in newborn infants with congenital heart defects (Galli et al., 2004; Li et al., 2009).

The pattern of brain injury seen on MRI can predict the severity and type of neurodevelopmental dysfunction in later life (Twomey et al., 2010; Martinez-Biarge et al., 2011; Harteman et al., 2013), although the degree of encephalopathy and the extent of EEG abnormalities, including seizures, are also predictive of subsequent neurodevelopmental outcome (Miller et al., 2004; van Rooij et al., 2005). Basal ganglia-thalamic injury is often associated with a worse neurodevelopmental outcome in general and is primarily associated with motor deficits, in particular dyskinetic cerebral palsy, which can already be detected at 12-18 months of age. Involvement of other developmental domains is common as well (cognition, speech and epilepsy) (Miller et al., 2005; Sato et al., 2008; Martinez-Biarge et al., 2010; Twomey et al., 2010). WS injury is most often associated with cognitive impairment (Miller et al., 2005; Steinman et al., 2009; Martinez-Biarge et al., 2012) which can be overlooked at 12-18 months of age and become more apparent after 30 months of age (Marlow et al., 2005; Miller et al., 2005; Steinman et al., 2009; van Kooij et al., 2010). The prevalence of motor impairment after WS injury is low (6-18%) compared to the prevalence after basal ganglia-thalamic injury (50-75%) (Miller et al., 2005; Sato et al., 2008; Martinez-Biarge et al., 2011). An abnormal signal in the posterior
limb of the internal capsule (PLIC) is described as an accurate predictor of neurodevelopmental outcome (Miller et al., 2005). A normal PLIC is usually seen with normal or mild basal ganglia-thalamic lesions and is predictive of a normal motor outcome (Martinez-Biarge et al., 2011). An abnormal PLIC is associated with an unfavourable outcome (Rutherford et al., 1998; Twomey et al., 2010). However, the abnormal signal in the PLIC is usually first seen beyond 72 hours after birth and myelination can only be assessed in infants with a gestational age beyond 38-40 weeks. Apparent diffusion coefficient (ADC) measurements in the basal ganglia and magnetic resonance spectroscopy (1H-MRS) measurements (lactate/N-Acetyl Aspartate [NAA]) can add significantly to the predictive properties of MRI, although it should be noted that ADC shows pseudonormalisation after the first week, but MR spectroscopy measurements remain abnormal for a prolonged period of time (Alderliesten et al., 2011).

Perinatal stroke

Perinatal arterial ischaemic stroke

Neonatal seizures and especially hemiconvulsions often suggest the diagnosis of perinatal arterial ischaemic stroke (PAIS). Compared to those who develop seizures due to HIE, seizures related to PAIS tend to develop significantly later and are more often focal (Rafay et al., 2009). It is important to use at least a two-channel aEEG or standard EEG recording in infants presenting with hemiconvulsions (van Rooij et al., 2010). It is possible to recognize the larger middle cerebral artery infarcts and lenticulostriate infarcts which are well within the field of view using cUS, but in general it will take 24-72 hours before the increase in echogenicity becomes apparent (table 2) (Govaert, 2009). It may not be possible to recognise cortical infarcts or infarcts in the territory of the posterior cerebral artery using cUS, unless the posterior fontanel is used as an acoustic window (Cowan et al., 2005; van der Aa et al., 2013). MRI and especially DWI enables detection of PAIS within hours after onset and allows prediction of development of subsequent unilateral spastic cerebral palsy by assessing involvement of the corticospinal tracts (de Vries et al., 2005; Kirton et al., 2007).

Cerebral sinovenous thrombosis

Cerebral sinovenous thrombosis (CSVT) may also present with neonatal seizures. The presence of an intraventricular haemorrhage associated with a
Table 2. Neuroimaging findings over time in HIE and PAIS.

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>cUS findings</th>
<th>MRI findings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><24h</td>
<td>24-48h</td>
</tr>
<tr>
<td>HIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-BGT pattern</td>
<td>BGT hyperechogenicity, oedema</td>
<td>DWI changes; BGT</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>-WM/WS pattern</td>
<td>Subcortical/periventricular hyperechogenicity, oedema</td>
<td>DWI changes; cortex, white matter</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>PAIS</td>
<td>Focal hyperechogenicity, wedge-shaped, with linear demarcation (MCA infarct)</td>
<td>DWI changes; territory of cerebral artery and corticospinal tracts</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td></td>
</tr>
</tbody>
</table>

HIE: hypoxic-ischaemic encephalopathy; BGT: basal ganglia, thalami; DWI: diffusion weighted imaging; T1WI: T1-weighted imaging; T2WI: T2-weighted imaging; WM/WS: white matter/watershed; PAIS: perinatal arterial ischaemic stroke; MCA: middle cerebral artery.

unilateral thalamic haemorrhage in a full-term infant suggests the presence of a CSVT (Wu et al., 2003). Doppler ultrasound may help to diagnose occlusion of the superior sagittal sinus but is less reliable for other sinuses, and an MRI and magnetic resonance venography (MRV) are often required to confirm CSVT. Making the correct diagnosis is important, as anticoagulant therapy is increasingly being used (Moharir et al., 2010). The presence of a neonatal thalamic haemorrhage is strongly associated with later development of electrical status epilepticus in slow wave sleep (Kersbergen et al., 2013).

Intracranial haemorrhage

An intracranial haemorrhage (ICH) in the full-term infant is not as common as in the preterm infant, but does occur (Bruno et al., 2014). Blood in the posterior fossa is common, which can be a chance finding (Whitby et al., 2004) and does not often lead to neonatal seizures. An intraventricular haemorrhage can be associated with CSVT, but can also occur without a reasonable explanation. Neonatal seizures in a full-term infant with an intraventricular haemorrhage may be difficult to control (Toet et al., 2005). A parenchymal haemorrhage can also be diagnosed in the absence of a complicated delivery. A frontal lobe haemorrhage is most common and, in the presence of a midline shift, neurosurgical intervention may be considered (Brouwer et al., 2010). An infant with a temporal lobe haemorrhage often presents with apnoeic episodes, which turn out to be of epileptic origin when continuous aEEG monitoring is used (Hoogstraate et al., 2009). Epileptic apnoeic episodes are thought to originate from the limbic system (Watanabe et al., 1982).

Central nervous system infection

Any infection of the CNS can present with seizures. Both bacterial and viral CNS infections can occur in the neonatal period, but severe CNS infections are not so common. Early gram negative bacterial infection, as well as late-onset group B Streptococcus infection, may be associated with severe brain injury (de Vries et al., 2006). The neuroimaging pattern may be very characteristic (table 3), for instance in Bacillus cereus septicemia, where the white matter may show cystic evolution within hours after the onset of the infection (Lequin et al., 2005). In infants with an Escherichia coli infection, hydrocephalus may only become apparent weeks after the acute illness, and isolated dilatation of the fourth ventricle is often an associated finding. A wide spectrum of viral infections can present with neonatal seizures. Some infants present with a fever and/or rash, and PCR in the cerebrospinal fluid (CSF) may confirm the diagnosis of an enterovirus or parechovirus encephalitis (Verboon-Maciolek et al., 2006; Verboon-Maciolek et al., 2008). The DWI changes may be extensive, but the outcome may be better than expected on the basis of the DWI findings in the majority of these infants (van Zwol et al., 2009). A similar
Table 3. Neuroimaging findings in CNS infections.

<table>
<thead>
<tr>
<th>Causative organism</th>
<th>Neuroimaging findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIAL</td>
<td></td>
</tr>
<tr>
<td>GBS1</td>
<td>Ischaemic infarctions, in particular BGT</td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>Empyema, ventriculitis, hydrocephalus, trapped 4th ventricle</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>Cerebral abscesses</td>
</tr>
<tr>
<td>Streptococcus pneumonia/haemophilus influenza</td>
<td>Subdural collections/effusions</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>Frontal lobe infarction</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>White matter liquefaction</td>
</tr>
<tr>
<td>Citrobacter</td>
<td>Ischaemic infarctions, cerebral abscesses</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Cerebral abscesses</td>
</tr>
<tr>
<td>VIRAL</td>
<td></td>
</tr>
<tr>
<td>HSV6</td>
<td>DWI changes in white matter, not restricted to temporal lobes, and brainstem</td>
</tr>
<tr>
<td>Parechovirus</td>
<td>DWI changes; white matter, PWML, cystic PVL</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>DWI changes; white matter, PWML, cystic PVL</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>DWI changes; white matter, PWML, cystic PVL</td>
</tr>
</tbody>
</table>

GBS: group B *Streptococci*; BGT: basal ganglia, thalami; PWML: periventricular leukomalacia; HSV: herpes simplex virus; DWI: diffusion weighted imaging; PWML: punctate white matter lesions.

Pattern of diffusion restriction in the white matter was recently demonstrated in full-term infants presenting with seizures between days 4 and 6 of life with a rotavirus infection (Lee et al., 2014). Herpes simplex virus encephalitis is rare and severe lesions in the temporal lobes, but also elsewhere in the neonatal brain, are best seen with MRI, and once again more clearly and earlier with DWI (Vossough et al., 2008; Bajaj et al., 2014).

Other infections, for instance *Toxoplasmosis gondii*, can also present with neonatal seizures, in the presence of hydrocephalus and extensive white matter injury.

Inborn errors of metabolism

Inborn errors of metabolism can be difficult to diagnose, and recognition of characteristic neuroimaging features is very helpful in the diagnostic process. It is beyond the scope of this review to describe all potential metabolic disorders which may present with neonatal seizures. A useful review was published by Prasad and Hoffmann (2010). A specific imaging pattern can suggest the diagnosis in some disorders and the additional use of 1H-MRS may also aid in making the diagnosis (table 4) (Leijser et al., 2007).

Newborn infants with nonketotic hyperglycaemia (NKH) often present with neonatal seizures and/or hiccups which may have been felt by the mother in utero. The aEEG typically shows a burst suppression pattern without a history of HIE. The diagnosis may already be suspected using cUS, as the corpus callosum is often dysplastic, associated with a so-called "bull-horn" shape of the ventricles. It is possible to confirm this by MRI, but DWI may also show restricted diffusion of the PLIC and of the dorsal aspect of the midbrain and pons due to vacuolating myelinopathy (Kanekar and Byler, 2013). Using 1H-MRS, the high glycine peak also suggests NKH.

Newborn infants with molybdenum cofactor deficiency or sulphite oxidase deficiency are often considered to have HIE, but the history is often not typical and these metabolic disorders should be considered as well. Typically, the onset of seizures is rather early to be due to HIE, seizures are very difficult to control and the background activity tends to deteriorate over time (Sie et al., 2010). MRI during the first week may show extensive DWI abnormalities, preceding extensive cystic evolution, which can be seen when the MRI is performed again several weeks later (Stence et al., 2013).

Those with peroxisomal biogenesis disorders do not invariably present with neonatal seizures. Ventricular dilatation, germinolytic cysts, and lenticulostriate vasculopathy may be recognised by cUS. As the fontanel is large in newborn infants with Zellweger syndrome, the sylvian fissure can often be clearly visualised and polymicrogyria may be suspected with cUS and confirmed with MRI. In addition, MRI may show signal intensity changes in the white matter and delayed myelination of the PLIC. Using 1H-MRS with a short...
Table 4. Neuroimaging findings in metabolic disorders.

<table>
<thead>
<tr>
<th>Transient metabolic disorders</th>
<th>Neuroimaging findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoglycaemia</td>
<td>Predominant occipital abnormalities</td>
</tr>
<tr>
<td>Hyperbilirubinaemia (kernicterus)</td>
<td>Increased signal intensity in the globus pallidus on T1-weighted sequence</td>
</tr>
<tr>
<td>Inborn errors of metabolism</td>
<td></td>
</tr>
<tr>
<td>Pyridoxine deficiency</td>
<td>Abnormalities of white matter and corpus callosum; haemorrhage in white matter.</td>
</tr>
<tr>
<td>Biotinidase deficiency</td>
<td>DWI abnormalities of the PLIC, corpus callosum, corona radiata (vacuolating myelinopathy).</td>
</tr>
<tr>
<td>Glutaric aciduria type 1</td>
<td>Widened anterior temporal, Sylvian and frontal CSF spaces and T2 hyperintensity of the pallidus.</td>
</tr>
<tr>
<td>Nonketotic hyperglycinaemia</td>
<td>Dysplastic corpus callosum, DWI abnormalities and lack of myelination of the PLIC (vacuolating myelinopathy).</td>
</tr>
<tr>
<td>Molybdenum cofactor deficiency/sulphite oxidase deficiency</td>
<td>Extensive DWI changes of white matter with cystic evolution.</td>
</tr>
<tr>
<td>Zellweger syndrome</td>
<td>Germinolytic cysts, lenticulostrate vascularopathy, polymicrogyria; (^1)H-MRS: abnormal mobile lipid peak at 0.9 ppm</td>
</tr>
</tbody>
</table>

PLIC: posterior limb of the internal capsule; DWI: diffusion weighted imaging; CSF: cerebrospinal fluid; \(^1\)H-MRS: magnetic resonance spectroscopy.

echo time (TE), a reduced NAA peak at 2 parts per million (ppm), a lactate peak at 1.33 ppm, and an abnormal peak at 0.9 ppm can be seen, the latter being due to the resonances of the methyl residues of mobile lipids (Groenendaal et al., 2001). Hypoglycaemia can be considered as a transient metabolic disturbance and newborn infants may present with seizures due to severe hypoglycaemia, usually with a value below 1 mmol/L. The abnormalities tend to be overlooked with cUS, and are typically located in the occipital white matter, unless the posterior fontanel is also examined. MRI is a better technique to identify the lesions, which are often not restricted to the occipital regions (Burns et al., 2008).

Refractory neonatal seizures can increasingly be explained by an underlying genetic problem. Weckhuysen et al. (2012, 2013) recently showed mutations in KCNQ2, which encodes the voltage-gated potassium channel Kv7.2 in children with unexplained neonatal or early-infantile seizures and associated psychomotor retardation. Early MRI showed characteristic hyperintensity in the basal ganglia and thalamus that later resolved in a subgroup of their patients.

Early infantile epileptic encephalopathy (EIEE or Ohtahara syndrome) is a diagnosis made when intractable seizures are seen in the neonatal period. Many infants with Ohtahara syndrome have an associated underlying cerebral malformation, for instance, agenesis of the corpus callosum in Aicardi syndrome. EIEE is associated with several gene mutations, including Aristaless-related homeobox (ARX), cyclin-dependent kinase-like 5 (CDKL5), and syntaxin-binding protein 1 (STXBP1). No specific neuroimaging findings have been reported in these children (Pavone et al., 2012).

Aicardi-Goutières syndrome is defined as a genetically determined early-onset encephalopathy with a variable phenotype, including neurological manifestations such as dystonia, spasticity, epileptic seizures, progressive microcephaly, and severe developmental delay. Aicardi-Goutières syndrome is a heterogeneous disorder with five disease-associated genes (AGS1-5) accounting for 83% of cases that fulfill the clinical diagnostic criteria. In a recent study, 25% of infants were reported to have seizure onset within the first month after birth. Calcification is more easily detected using cUS than with MRI, but MRI shows delayed...
myelination, grey and white matter atrophy, ventricular enlargement, and cystic degeneration over time, often quite marked in the temporal lobes and the periventricular white matter (Ramantani et al., 2014).

Unknown

Although not so common anymore, every now and then neonatal seizures may occur without an explanation based on either neuroimaging or extensive genetic and metabolic investigations. More and more infants, however, can be diagnosed at a later stage. Sometimes, with a second MRI scan, using higher resolution and thinner slices, it may be possible to detect an area of cortical dysplasia (Wang et al., 2013). In others, a new mutation may be identified (Mastrangelo and Leuzzi, 2012).

Neonatal MRI protocol

A standard neonatal MRI protocol should include sagittal T1-weighted images (T1WI), axial or coronal T2-weighted images (T2WI), and T1WI or inversion recovery-weighted images and DWI, including ADC mapping.

MRV, MR angiography (MRA), 1H-MRS, and susceptibility-weighted images (SWI) should preferably be available as well. DWI is especially important in HIE and PAIS and is also useful in CNS infections, since pus shows up as a high signal on DWI. MRV should be added when a CSVT is suspected. MRA can be useful in PAIS and in diagnosing arteriovenous malformations. 1H-MRS can provide additional information in suspected metabolic disorders, and HIE and SWI are useful in diagnosing (small) haemorrhages. Slice thickness should be 2 mm or thinner.

Conclusion

Neuroimaging is very helpful to identify the underlying aetiology of neonatal seizures in full-term infants. CSUS should be used in the acute phase and may show severe and centrally-located lesions, as well as calcification, which will not be recognised by MRI. More detailed information may subsequently be obtained with MRI, provided the use of thin (2 mm) slices and sequences suitable for imaging neonates. This renders MRI superior in diagnosing migrational disorders and lesions in the posterior fossa. When 1H-MRS is added to the imaging protocol, metabolic disorders may be identified prior to obtaining results from metabolic investigations. Information on the type and severity of brain lesions may help to give a more accurate prognosis, and in some families, will aid with genetic counselling.

Acknowledgements and disclosures.

This work was supported by the European Community’s 7th Framework Programme (HEALTH-F5-2009-4-2-1, grant agreement no. 241479, the NEMO project).

Lauren Weeke was supported by the European Community’s Seventh Framework Programme (FP7-HEALTH-2009-4-2-1, grant agreement no. 241479, The NEMO Project). Pr. Linda de Vries presented part of the work at the Progress in Epileptic Disorders Workshop co-organized by the journal ear Rome, Italy.

None of the authors have any financial agreements or conflicts of interest to disclose.

References

Educational message

Cranial Ultrasound (cUS) should be performed for all newborns presenting with seizures in the acute phase. It may direct the differential diagnosis and is more informative than MRI in identifying intraventricular haemorrhages, germinolytic cysts and lenticulostriate vasculopathy.

It is strongly recommended to subsequently perform an MRI, in cases of hypoxic-ischaemic encephalopathy (HIE) on Day 4-7 after birth, after completion of hypothermia, and in all other cases as soon as possible.

T1- and T2-weighted images and DWI should be included in all MRI protocols. DWI is particularly useful for HIE, perinatal arterial ischaemic stroke (PAIS), CNS infections and inborn errors of metabolism. In cases of suspected cerebral sinovenous thrombosis (CSVT), MRVenography should be added to the protocol.

In cases of suspected inborn errors of metabolism, 1H-MRS should be added to the MRI protocol.

The use of CT should be restricted to cases of severe intracranial haemorrhage (ICH) when urgent neurosurgical intervention may be required.

TEST YOURSELF

(1) Which patterns of injury on MRI can be found in a child with hypoxic-ischaemic encephalopathy and how do the patterns relate to neurodevelopmental outcome in later childhood?

(2) For a full-term infant presenting with seizures on day 6 after birth, an intraventricular and thalamic haemorrhage on cranial ultrasound is identified. Which diagnosis should be ruled out and which sequence should be added to the MRI protocol?

(3) Neuroimaging findings in infants with a CNS infection are often dependent on a specific variable, which variable is this?

Note: Reading the manuscript provides an answer to all questions. Correct answers may be accessed on the website, www.epilepticdisorders.com, under the section “The EpiCentre”.
