Panayiotopoulos syndrome with coincidental brain lesions

A. Destina Yalcin, Hulya Ertasoglu Toydemir, Lale Gundogdu Celebi, Hulki Forta
Neurology Clinic, Sisli Etfal Education and Research Hospital, Sisli-Istanbul, Turkey
Received January 11, 2009; Accepted July 16, 2009

ABSTRACT – Purpose. To describe the clinical and electroencephalographic features of three patients diagnosed with Panayiotopoulos syndrome with different lesions identified by cranial MRI investigation.

Methods. Our study was based on patients from the Epilepsy Outpatient Clinic of Sisli Etfal Education Hospital in Istanbul, where a prospective study of Panayiotopoulos syndrome was initiated in 1995. Records of our Epilepsy Outpatient Clinic revealed 53 patients with Panayiotopoulos syndrome. Among them were three with cranial lesions identified by MRI. Results. The onset of the seizures in our patients ranged between five and eight years. The seizures included mainly autonomic symptoms such as nausea, vomiting, pallor, mydriasis, urinary and fecal incontinence, and rarely hypersalivation. Autonomic partial status was detected in one patient. The personal history of our patients revealed head trauma in two and difficult birth history in one patient. Two patients described simple febrile seizures. All patients had occipital spike or spike-wave complexes in their EEGs. The background activity was normal. From the cranial MRI, one patient had a neuroepithelial cyst, the second patient had a right occipital encephalomalous lesion and the third patient had an arachnoid cyst located in the cisterna magna associated with colpocephaly. Seizure frequency was low in general. All patients except for one received carbamazepine treatment 450-600 mg/day. None of our patients had seizures under antiepileptic treatment.

Conclusions. Children with Panayiotopoulos syndrome may have static MRI brain findings which are likely to be coincidental and do not affect prognosis.

Key words: autonomic seizures, occipital epilepsy, Panayiotopoulos syndrome, symptomatic epilepsy, cranial magnetic resonance imaging

An expert consensus has defined Panayiotopoulos syndrome (PS) as a benign age-related focal seizure disorder occurring in early and mid-childhood, characterized by seizures that are often prolonged, with predominantly autonomic symptoms, and by an EEG that shows shifting and/or multiple foci, often with occipital predominance (Ferrie et al., 2006). PS is remarkably benign in terms of seizure frequency and evaluation (Covanis, 2006). It is the second most common benign childhood epilepsy syndrome after Rolandic epilepsy. In this study, we describe the clinical and electroencephalographic features of three patients diagnosed with PS with different lesions detected by cranial MRI investigation.

Methods
Our study was based on patients from the Epilepsy Outpatient Clinic of Sisli Etfal Education Hospital (Istanbul, Turkey) where a prospective study of
PS was initiated in 1995. Records of our Epilepsy Outpatient Clinic revealed 53 patients with PS, among them were three with cranial lesions identified by MRI who were included in the study.

The personal and family history, neurological state, age of onset, seizure type, duration and circadian distribution, EEGs, neuroimages and school performance were all reviewed. The parents and close relatives were asked whether they had experienced seizures during their childhood or not. The ictal symptomatology was assessed from the patients’ own descriptions and their first-degree relatives. Seizures were classified according to the Commission of the International League Against Epilepsy (Commission on Classification and Terminology of the International League Against Epilepsy, 1989). All EEGs were performed in paperless EEG machines (Medelec DG compact 2000). Electrodes were placed according to the 10-20 International System. All records included three-minute long hyperventilation and intermittent photic stimulation in a selected stimulation range (0.5-30 Hz). Ictal recordings were not performed because of the difficulty in provoking seizures under laboratory conditions. Follow-up period for the three patients included regular visits every three months and many EEG recordings ranging between every four to six years.

Results

Patient 1

A five-year-old boy, had a simple febrile seizure at the age of two and a mild head trauma at the age of three. His parents described three episodes in one year, each lasting 30 to 45 minutes, when the boy was five years old. They always started with stomach ache and nausea which caused the child to wake up, followed by pallor, mydriasis, vomiting and incontinence of urine and faeces. Afterwards he became flaccid and unresponsive and went to sleep. These episodes were interpreted as autonomic partial status. The cranial MRI revealed a neuroepithelial cyst located in the left frontal lobe (figure 1). The EEG recorded just immediately after an episode showed high amplitude spike-wave complexes on both occipital regions prominent on the left side (figure 2). Background activity was normal. The patient was followed without treatment for four and a half years, during which time the described episodes did not repeat. The subsequent EEGs in the follow-up period showed a shift of the abnormality located within the same regions. No difficulties were ever experienced at school. The patient is now nine years old.

Patient 2

A seven-year-old girl, was born after a prolonged and difficult delivery. She was not cyanotic at birth. She had a complicated head trauma at the age of three years. When she was seven years old, she had three seizures in six months; of which two were related to awakening. They occurred 30 minutes after awakening, started with a feeling of nausea and dizziness and were combined with pallor and mydriasis. As the patient ran towards the toilet, she fell down flaccidly. During the last seizure, the patient woke up in the middle of the night, complained of feeling unwell and was nauseous. She was pale, her pupils were markedly dilated and she vomited repeatedly. Walking towards the toilet, she again fell down flaccidly and slept for several hours. Based on cranial MRI, a right occipital encephalomalasic lesion was detected (figure 3). Her first EEG showed spikes on the right occipital region with a normal background activity which was prominent during sleep (figure 4). On further EEG recordings we also detected spikes on the left occipital region appearing mostly independent from the right side. Antiepileptic treatment of 600 mg/day of carbamazepine was started and no seizures were observed in the follow-up period of six years. The treatment was terminated last year when she was twelve years old and the patient is still seizure free. Her school performance was always good.

Patient 3

She suffered from a simple febrile seizure at the age of two. At the age of eight years she had three nearly identical diurnal seizures, each lasting 5-10 minutes. Seizures began with a feeling of nausea, followed by pallor, mydriasis, vomiting and hypersalivation. At the end of the seizure, the child became flaccid and unresponsive. Her cranial MRI showed an arachnoid cyst located in the cisterna magna associated with colpocephaly (figures 5, 6). Her

Figure 1. A small neuroepithelial cyst located in the left frontal lobe (Patient 1).
repeated EEGs revealed occipital spike-wave complexes appearing almost always simultaneously on both sides (figure 7). Carbamazepine at a dose of 450 mg/day was administered after the third seizure and she had no other seizures in the follow-up period lasting four years. Her performance at school was above average.

Discussion

Panayiotopoulos syndrome was first described as “benign nocturnal childhood occipital epilepsy” in 1989 (Panayiotopoulos, 1989a, 1989b) and was cited in the new classification proposed by the ILAE in the group of idiopathic focal epilepsies of childhood together with benign Rolandic Epilepsy and occipital epilepsy, described by Gastaut (Engel, 2006). It can be best described as a childhood-related idiopathic susceptibility to partial seizures, mainly with autonomic ictal symptoms and electroencephalographically with occipital and extra-occipital spikes (Panayiotopoulos, 2005; Covaris, 2006; Ferrie et al., 2006; Koutroumanidis, 2007).

Age at onset varies between one and 12 years, but the first seizure generally presents at five years (Panayiotopoulos, 1988, 1999; Oguni et al., 1999; Caraballo et al., 2000). In our patients the seizures started between five and eight years in concordance with other studies.

In PS the seizures generally occur during sleep (Yalcin et al., 1997; Panayiotopoulos, 1999, 2005; Caraballo et al., 2007). In a typical seizure, the child is fully conscious, able to speak, wakes up with a feeling of sickness or nausea, looks pale and starts vomiting. Vomiting is the definite ictal symptom of PS, occurring in 70% of the cases (Kivity and Lerman, 1992; Beaumanoir, 1993; Dalla Bernardina et al., 1993; Vigevano and Ricci, 1993; Maher et al., 1995; Fejerman, 1996; Ferrie et al., 1997; Panayiotopoulos, 2005). Two of our three patients woke up with initial symptoms of the seizure and in the
second patient two seizures occurred within 30 minutes after awakening. Vomiting was seen in all of our cases. Other ictal autonomic symptoms include mydriasis and less often miosis, cardiorespiratory and thermoregulatory alternations, urinary and fecal incontinence, coughing and hypersalivation (Kivity and Lerman, 1992; Beaumanoir, 1993; Dalla Bernardina et al., 1993; Vigevano and Ricci, 1993; Maher et al., 1995; Fejermann, 1996; Ferrie et al., 1997; Yalçın et al., 1997; Kivity et al., 2000; Caraballo et al., 2007;
For PS, the whole seizure may be entirely autonomic, but commonly, other more conventional symptoms occur in the progress of the seizures. These mainly include deviation of the eyes and impairment of consciousness; visual hallucinations and illusions may occur, but these are not present at onset. Seizures of idiopathic childhood occipital epilepsy of Gastaut are exclusively occipital and onset predominantly consists of elementary visual hallucination (Panayiotopoulos, 2005; Covanis, 2008). None of our patients described a visual ictal symptom.

Another ictal symptom specific to PS is “ictal syncope.” This is defined as loss of postural tonus and consciousness and is detected in 20% of patients. During this episode, the child becomes unresponsive, appears pale with blue lips and falls down (Panayiotopoulos, 1992, 2005; Caraballo et al., 2007; Koutroumanidis, 2007). In our group, ictal syncope was described in all patients.

An unusual and crucial feature of PS is partial status epilepticus reported in 44% of affected children (Panayiotopoulos, 2002, 2005; Koutroumanidis et al., 2005). In our group it was diagnosed only in one patient. For PS, seizures infrequently recur and end after one or two years whether they are treated or not, as for Rolandic epilepsy (Panayiotopoulos, 1988, 1989a, 1989b, 1992; Kivity and Lerman, 1992; Vigevano and Ricci, 1993; Maher et al., 1995; Fejermaan, 1996; Ferrie et al., 1997). Frequency of the seizures or the presence of partial status epilepticus do not affect this progression.

The principle of a follow-up without treatment for Rolandic epilepsy is also valid for these cases (Yalçın et al., 1997; Panayiotopoulos, 1999; Covaris, 2006; Koutroumanidis, 2007). An expert consensus statement concluded that a prophylactic treatment with antiepileptic drugs was probably best reserved for children whose seizures were unusually frequent, distressing, or otherwise significantly interfering with the child’s life (Ferrie et al., 2006). In our group, seizure frequency was also low. Our first patient was followed without treatment. In two of our cases, under low dose carbamazepine treatment, seizures did not recur. For the second patient the treatment was discontinued and she remained seizure-free.

Another ictal symptom specific to PS is “ictal syncope.” This is defined as loss of postural tonus and consciousness and is detected in 20% of patients. During this episode, the child becomes unresponsive, appears pale with blue lips and falls down (Panayiotopoulos, 1992, 2005; Caraballo et al., 2007; Koutroumanidis, 2007). In our group, ictal syncope was described in all patients.

The EEG, the most useful diagnostic test for PS, shows functional spikes in many brain lesions predominantly in occipital and centro-temporal location (Oguni et al., 1999; Covaris et al., 2003; Lada et al., 2003; Ohtsu et al., 2003). As for Rolandic epilepsy, the spikes in PS tend to shift from one side to another. The EEGs of our cases displayed normal background activity with high-voltage spikes and spike-waves over the occipital area. Spikes located in regions other than the occipital area were not detected.

Autonomic ictal signs and symptoms typical for PS can also be observed in symptomatic cases. A comprehensive study evaluating autonomic symptoms and signs during partial epileptic seizures in 100 children with symptomatic focal epilepsies provides crucial differences between symptomatic and idiopathic epilepsies in

Figure 7. The interictal EEG recording illustrates occipital spikes, synchronously appearing on both sides (Patient 3).
childhood (Fogarasi et al., 2006). Regarding the most important ictal manifestations, in the symptomatic group, typical psychomotor or motor seizures predominate. In this group, vomiting, the cardinal ictal symptom of PS, usually occurs alone and seldomly with other autonomic ictal symptoms. Vomiting also appears in the late sequence of the seizure and frequently in the postictal period. In the idiopathic group, including mainly PS, in contrast, the autonomic signs or symptoms can be the sole ictal manifestation and vomiting occurs early in the seizure sequence.

Autonomic status epilepticus is described in 44% of affected children with PS but not detected in the symptomatic group. Ictal syncope, a highly specific ictal symptom of PS, was described as atonic seizure only in four children in the symptomatic group. The described autonomic ictal symptoms and signs in our patients were in concordance with the idiopathic group.

Most authors consider cognitive, neurological and anatomical findings as the basis for the diagnosis of idiopathic forms of epilepsy, especially for benign childhood focal epilepsies, however, because of their high prevalence they may incidentally occur in children with neurocognitive deficits or abnormal brain scans (Panayiotopoulos et al., 2008). Since the appearance of modern neuroimaging procedures, abnormal findings have been reported in patients with benign Rolandic epilepsy (Gelisse et al., 1999, 2003; Lundberg et al., 1999). In our cases, the MRI documented a left frontal neuroepithelial cyst, a right occipital encephalomalasic lesion and an arachnoid cyst located in the cisterna manga associated with colpocephaly. We believe that the MRI lesions are unrelated to the seizures. The first patient’s left frontal neuroepithelial cyst could be involved in epileptogenesis but the presence of exclusively occipital spikes in the repeated EEGs is strong evidence against this possibility. The seizure symptomatology of our second patient, who had a right occipital encephalomalasic lesion, was not found to be in concordance with seizures originating from the occipital lobe. These usually start with visual auras, commonly including elementary visual hallucinations or, rarely, ictal blindness. Contralateral head and eye deviation, blinking and nystagmoid eye movements are described, especially when the seizures progress (Panayiotopoulos, 2002). None of these ictal symptoms were observed or described in our patient. Despite discontinuation of antiepileptic treatment she remained seizure-free, which could be interpreted as strong evidence for the benignity of her seizures. Because of its nature and topography, the arachnoid cyst is unlikely to be epileptogenic. Most of the studies investigating the relationship between arachnoid cysts and epilepsy concluded that there is no association between them and arachnoid cysts can be incidentally discovered by conducting an MRI of epileptic patients, as in the case of our last patient (Yalcin et al., 2002; Betting et al., 2006; Ozisik et al., 2008).

We believe that our patients show the typical electrophysiological traits of PS, despite cerebral lesions. The three lesions reported here do not influence prognosis, thus supporting the idiopathic nature and the benign course of our patients. □

Disclosures.

None.

References


Covain A. A benign childhood autonomic epilepsy frequently imitating encephalitis, syncope, migraine, sleep disorder, or gastroenteritis. Pediatrics 2006; 118: 1237e-1243e.

Covain A. Correspondence on “Childhood epilepsy with occipital paroxysms: difficulties in distinct segregation into either the early-onset or late-onset subtypes” J Child Neurol 2008; 23: 1085-6.


