ABSTRACT. Wound healing is a highly coordinated and complex process involving various cell types, chemical mediators and the surrounding extracellular matrix, resulting in a tightly orchestrated re-establishment of tissue integrity by specific cytokines. It consists of various dynamic processes including a series of overlapping phases: inflammation, proliferation, re-epithelialization and remodeling. One of the underlying mechanisms responsible for the disturbances in wound healing is an out-of-control inflammatory response that can cause pathological consequences, such as hypertrophic scars, keloids or chronic wounds and ulcers. Recently, several reports have evaluated the effects of extremely low frequency electromagnetic fields (EMFs) on tissue repair. In particular, the data analysis supports an anti-inflammatory effect of EMFs by the modulation of cytokine profiles that drive the transition from a chronic pro-inflammatory state to an anti-inflammatory state of the healing process. In this review, we focus on the effect of EMFs on skin wound healing showing emerging details of the anti-inflammatory effects of EMFs, with a view to cytokines as candidate biomarkers. Molecular clarification of the mechanisms involved in the modulation of inflammatory factors following exposure to EMFs will provide a better understanding of the cellular responses induced by EMFs and a potential, additional treatment in non-responding, chronic wounds.

Key words: wound healing, EMF

Wound healing is a dynamic process involving a series of coordinated events, including bleeding, coagulation, acute inflammatory response, regeneration, migration and proliferation of connective tissue and parenchyma cells, as well as synthesis of extracellular matrix (ECM) proteins and remodeling [1]. The repair process begins at the moment of injury that causes leakage of blood into the wound site and activation of the clotting cascade. Clotted blood provides a matrix that determines cell adhesion and migration. In particular, platelets provide a source of growth factors and pro-inflammatory cytokines that mediate the recruitment of inflammatory cells and fibroblasts into the wound site [2]. Neutrophils and macrophages combat invading microbes and also, critically, support the repair process by releasing a spectrum of cytokines and growth factors, which initiate the phase of granulation tissue formation. This tissue is composed of endothelial cells, macrophages, fibroblasts, and new extracellular matrix, and exerts its function in covering and filling the wound area. The components of the provisional extracellular wound matrix facilitate cell adhesion, migration and proliferation. Tissue integrity is restored by re-epithelialization, following keratinocyte proliferation and migration at the wound edge [3]. Finally, during the remodeling phase, a balance is reached between the synthesis of new components of scar matrix and their degradation by proteases in determining granulation tissue regression and its transformation into scar tissue. Typical features of these events include regression of vascular structures, transformation of fibroblasts into myofibroblasts, substitution of provisional ECM by a permanent, collagenous matrix and importantly, resolution of the inflammatory response [4-6].

Wounds can be categorized as acute or chronic according to their healing time-frame [7]. Acute wounds repair themselves and heal normally following the correct pathway. An example of a common acute wound is a clean and uninjured surgical incision wound closed by surgical sutures.

When wounds do not heal in a timely and orderly manner, they result in chronic, non-healing wounds (ulcers). Such wounds are those that have failed to progress through the normal stages of healing, and are characterized by chronicity and frequent relapse [7]. Ischemia, diabetes mellitus, venous stasis, and pressure can be at the root of the majority of non-healing wounds that are prone to complications including functional limitations, infections, and malignant transformation [8-10].

INFLAMMATION IN WOUND HEALING

The inflammatory response is the first stage in a number of overlapping processes that constitute wound healing.
The normal function of inflammation in an acute wound is to prepare the wound bed for healing by removing necrotic tissue, debris, and bacterial contaminants, as well as recruiting and activating fibroblasts and keratinocytes. In particular, skin injury causes cell damage and injury to blood vessels. Damaged cells respond by activating several “stress signal” pathways within a few minutes [11, 12], and leaking endogenous molecules, including damage-associated molecular pattern molecules (DAMPs), which might act as activation cues and/or chemotactic factors for other cells in the area [13]. The inflammatory response starts during the late phase of coagulation and begins immediately with the passive leakage of circulating leukocytes (largely neutrophils) from damaged blood vessels into the wound [14]. The inflammatory response continues with active recruitment of neutrophils and then macrophages from nearby vessels, which is orchestrated by growth factor signals from serum [15, 16], release of platelet granule content, activation of cells resident at the wound site and presence of foreign epitopes from invading organisms.

Inflammation is mediated by a variety of soluble factors, including a group of secreted polypeptides known as cytokines. Inflammatory cytokines can be divided into two groups: those involved in acute inflammation and those responsible for chronic inflammation: some cytokines, such as IL-1, significantly contribute to both acute and chronic inflammation. Cytokines play an important role in the communication between cells, and their actions can be auto-, para- or endocrine, via specific cell-surface receptors on their target cells, which are cells of the same or similar type as the cytokine-producing cell. As intercellular mediators, they regulate survival, growth, differentiation and effector functions. Cytokines, along with other proteins, play regulatory roles in wound healing. As part of this process, inflammation involves platelet activation and recruitment of neutrophils, macrophages, and fibroblasts to the wound site. The activated platelets release a wide range of biologically active mediators, known to be key players in inflammation, such as: growth factors [17, 18], chemokines such as IL-8, MCP-1, MIP-1α, RANTES [19], MIP-2 (CXCL2), LIX (CXCL6), GRO-α (CXCL1), ENA-78 (CXCL5), SDF-1α (CXCL12), MCP-3 (CCL7), PF4 (CXCL4), and cytokine transforming growth factor (TGF)-β1, TGF-β2 and IL-1. Thrombin is another important and early mediator of clotting. It is released by platelets, and is a serine protease that mediates clot formation and also plays a role in inflammation [20]. Indeed, thrombin stimulates the release of pro-inflammatory cytokines, such as MCP-1, IL-6 and IL-8 by endothelial cells, which induce neutrophils and monocyte chemotaxis [21].

At the same time, there is activation of immune cells that are already resident within the tissue, such as mast cells [22], γδ T cells [23] and Langerhans cells [24], which, in turn, release a rapid pulse of chemokines and cytokines. Following injury, residential mast cells degranulate within hours, contributing to neutrophil recruitment, vascular permeability and wound closure rate [25]. Skin γδ T cells are strictly limited in their distribution to the epidermis and are described as γδ dendritic epidermal T cells (γδDETC). These cells have a role in improving the healing response following mechanical injury, having been identified as a source of key growth factors such as FGF-7 and -10, IGF-1 and keratinocyte growth factors (KGFs), thereby regulating keratinocyte proliferation and differentiation [26]. Finally, foreign epitopes such as the lipopolysaccharides (LPS) and formyl-methionyl peptides of invading microorganisms play a key role in active recruitment of neutrophils and subsequently of monocytes [27].

Together, these signals trigger local endothelial cell ‘activation’ and thus expression of selectins. These molecules control the rolling and then tethering of leukocytes to the vessel wall and subsequent crossing of the endothelial barrier [28]. At this point, recruited and activated neutrophils begin the debridement of devitalized tissue and phagocytosis of infectious agents, utilizing bursts of reactive oxygen species (ROS), release of cationic peptides and eicosanoids [29, 30]. Microarray analysis shows that change in the expression profile is induced in neutrophils upon recruitment to a wound site, and that these cells also influence many other aspects of repair, such as resolution of the fibrin clot and provisional ECM, promotion of angiogenesis, and re-epithelialization [31]. Also, an in vitro study demonstrated that neutrophils contribute to modulate the expression profile of macrophages at wound sites, regulating innate immunity in wound healing [32].

Macrophages appear in the wound 48-72 hours after injury [33]. Circulating monocytes mature into macrophages at the wound site and act with a specific expression profile according to their stimuli [34]. These cells clear up matrix and cell debris, including apoptotic neutrophils [35]. The phagocytosis of apoptotic neutrophils or other cells have been shown to induce an anti-inflammatory phenotype in macrophages. This phenotype includes the release of transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) and a reduced ability to produce pro-inflammatory mediators, such as tumor necrosis factor (TNF)-α, after LPS stimulation [36]. Accordingly, Deonarine et al. showed that both classically- and pro-inflammatory-activated macrophages (M1) and alternatively-activated (anti-inflammatory and pro-angiogenic) macrophages (M2) are present in the earlier phase of healing [37]. Subsequently, M2 become the predominant inflammatory cells. Macrophages play a key role in the late stage of the inflammatory response, thereby releasing cytokines and growth factors that have activated the keratinocytes, fibroblasts and endothelial cells [35, 38]. In addition, these cells generate nitric oxide (NO) and large amounts of ROS [39], which are known to drive the same aspects of repair [40].

The inflammatory response ends once wound healing is complete and several mechanisms have been proposed for resolution of the inflammatory response. These mechanisms include the drainage of inflammatory cells via lymphatic vessels [41, 42], down-regulation of chemokine expression by anti-inflammatory cytokines such as IL-10 and TGF-β1 [43, 44], up-regulation of anti-inflammatory molecules [45-47] and apoptosis [48].

An exaggerated and prolonged inflammatory response at the wound site is a cardinal feature of non-healing conditions and excessive scarring [49]. In the wound site, bacterial overgrowth, leukocyte trapping and necrotic tissue can cause a persistent recruitment and activation of inflammatory cells [50-53], inducing the predominant presence of pro-inflammatory cytokines, such as TNF-α [54, 55]. The physiological feedback mechanisms that
drive towards resolution of the inflammatory response are short-circuited, leading to an uncontrolled, inflammatory, positive feedback loop. In addition, pro-inflammatory cytokines activated neutrophils, macrophages, and resident cells, inducing expression and activity of several classes of matrix metalloproteases (MMPs), such as gelatinases (MMP-2, -9) and collagenases (MMP-1, -13) [56]; furthermore, chronic wounds present elevated levels of serine protease, particularly elastase of neutrophilic origin [57]. As a result, fibroblasts are unable to make progress in depositing extracellular matrix because degradation of collagen occurs more rapidly than its synthesis. Tissue degradation further recruits inflammatory cells, continuing the inflammatory cycle.

In chronic wounds, the inflammatory cycle is also sustained by generation of a pro-oxidant microenvironment. Leukocytes and resident cells, particularly some fibroblasts that show premature senescence [58], are sources of ROS [59]. These molecules actively induce expression of pro-inflammatory cytokines, chemokines, MMPs and serine proteases.

Under normal conditions, the bioavailable NO has highly beneficial effects on wound healing, influencing angiogenesis and proliferation. Furthermore, NO has a scavenging effect on superoxide anion (O2•−), which is the main component of oxidative stress. However, under conditions of excessive and prolonged production of O2•− in wounds, the increase in NO might evolve into significantly increased nitrosative stress due to the production of peroxynitrite (ONOO−) and peroxynitrous acid (ONOOH). ONOOH can trigger a cascade of events leading to the generation of highly reactive and damaging radicals and oxidative species [60]. These species can impair the process of wound healing. Indeed, increased inducible nitric oxide synthase (iNOS) activity and nitrate levels have been shown to be responsible for diabetic foot and chronic venous ulcers [61, 62].

In summary, the high protease and pro-oxidant environment results in a chronic inflammatory state and in a significantly delayed time to complete wound healing. The implication is that despite the different underlying pathophysiology of the various ulcer types [63, 64], all ulcers have a final common pathway that leads to similar behaviors, in which chronic inflammation ubiquitously plays a key role.

**EMFS/PEMFs and Wound Repair**

Electromagnetic fields have been studied extensively as electro-pollutants, for example, cell phones, as well as a therapy. The ELF-EMF represent a form of non-ionizing, low-energy, electromagnetic field radiation capable of inducing physiological effects. We will herein refer to ELF-EMF of extremely low frequency sine waves (up to 300 Hz) and low amplitude (0.2-20 mT) as EMFs. Low frequency fields with specific wave shapes and amplitude are referred to as pulsed electromagnetic fields (PEMFs), a subset of ELF-EMF. In particular, therapy waves are grouped under the general heading of PEMF technology.

In general, EMFs have been found to produce a variety of biological effects. Although the mechanism interaction remains obscure, it has been shown that EMFs can cause changes in cell proliferation, cell differentiation, cell cycle, apoptosis, DNA replication and expression, and cytokine expression. Effects of EMFs are quite heterogeneous with regard to the cell type studied, intensity and type of field used. For more than three decades, the therapeutic efficacy of various forms of electrical stimulation, including capacitive coupling, direct current, combined magnetic fields, and PEMFs have been intensely investigated. PEMFs are usually more effective if less than 3 mT, and frequencies are commonly less than 100 Hz, below which they are referred to as ELF [65, 66].

Therapy with EMFs has been used for quite a long time in several medical therapeutic protocols, and the efficacy of low intensity EMFs has been demonstrated in several clinical applications. Although controversial, electromagnetic forces are believed to play a role in the normal repair of human tissues and have been investigated for this ability. Repair stimulation is one of the stronger and better documented biological effects of EMFs. Human clinical studies have highlighted that PEMFs act in reducing healing time and the rate of recurrence of venous leg ulcers [67, 68]. In particular, Stiller et al. observed that exposure to PEMFs induced a significant decrease in wound depth and pain intensity in patients with venous ulcers and none of the patients treated exhibited worsening of the lesions [67]. Also, patients exposed to PEMFs showed significantly higher rate of healing of venous leg ulcers and protection from ulcer recurrence when compared to the control group [68]. Candeo et al. reported that field exposure of ulcers of venous etiology, reduced or eliminated pain, edema and weeping up to six weeks after the initiation of the therapy. However, the worsening of lesions is present only in patients with ulcers associated with a concomitant cofactor, such as obesity or arterial occlusion [69].

Encouraging results have also been suggested by several studies on rats and mice. Some of the in vivo studies have shown that the wound site decreased significantly in size in the group of animals treated with PEMFs compared to the control group [70, 71]. In addition, PEMF exposure supports a significantly faster progression of the healing of wounds in animals exposed at the end of therapy [71]. Histological organization was also assessed after PEMF exposure, as supported by experiments based on a non-wounded rat model exposed to PEMFs. Indeed, PEMF treatment stimulated early formation of connective tissue and a vascular network, early collagen synthesis and better maturation, all leading to complete re-epithelialization after 12 days of exposure [69, 72, 73]. However, a more recent study showed no benefits, suggesting the need to determine more accurately the appropriate parameters for electromagnetic fields in tissue repair [74].

**EMFS/PEMFs, Cytokines and Wound Repair**

The EMF effects on the expression of cytokines have been mostly investigated with ex vivo and in vitro experiments on different cell types involved in tissue repair. These reports contribute to the explanation for the positive effects of such a physical agent in human clinical studies and in studies with animal models. Cytokines are messenger molecules whose actions are vary varied yet overlapping. Cytokines affecting different target cell populations and involved as regulators of immune and inflammatory reactions may rep-
resent an interesting therapeutic target. The synthesis of different cytokines, induced by several stimulants, is responsible for activating different immune mechanisms. The outcome of interaction between the stimulus and tissues is dependent on the particular cytokine response. There are a number of reports investigating the effect of EMFs/PEMFs in the regulation of cytokine expression.

It is well known that EMFs regulate cytokine gene expression by calcium flux-modulation. Regulation of intracellular Ca\textsuperscript{2+} concentrations during exposure to EMFs has been reported by various investigators [75-77]. It has been suggested that PEMFs control the release of calcium from intracellular stores. This represents a cellular response to homeostatic challenge that prompts mitochondria to produce free radicals and heightens the DNA response [78]: a first order effect of this stimulus is to prevent the onset of intracellular stores. This represents a cellular response to the conformational adaptive response of calcium channel proteins has been repeatedly cited [79-81].

Nevertheless, the effects of EMFs on cytokine expression are elicited immediately by up-regulation of antioxidant efficacy, as opposed to waiting for natural transcription to restore this balance. The time-delay needed to establish a time-varying equilibrium between free radicals and antioxidants in the secretory or constitutive phase of injury, determines whether there is activation of the entire inflammatory cascade including cytokine release [82]. Also, EMF investigators have established that gene up-regulation modeling takes place [83, 84]. These authors, accordingly, reported the up-regulation of HSP70, as just a part of a cluster of cyto-protective and restorative dynamics that EMFs set into play when tissue is oxidatively compromised.

We have identified a series of reports investigating the effect of EMFs/PEMFs in the regulation of cytokine expression and release of other pivotal mediators of inflammation (table 1). This experimental evidence can be related to wound healing that involves promotion of the initial pro-inflammatory stage, including PBMC influx and activation, and establishment of the anti-inflammatory stage that predisposes the resolution of the lesion.

Inflammation of skin can be determined at several, mutually nonexclusive checkpoints of the process with varying degrees determined by organ specificity. The most specific ones are those mediated by T cells that have specificity toward skin-specific antigens. The second checkpoint is at the stage of trafficking/chemotaxis/retention that dic-

---

Table 1

Overview of the ex vivo and in vitro studies on the effect of EMFs/PEMFs on cytokines and inflammation mediators expressed by cells involved in the skin repair process.

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Cell type</th>
<th>Stimulus</th>
<th>Wave</th>
<th>Frequency (Hz)</th>
<th>Intensity (mT)</th>
<th>Length of exposure (h)</th>
<th>Effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1</td>
<td>hPBMC</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>2.5</td>
<td>24</td>
<td>Increase</td>
<td>[89]</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Mouse macrophage</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>1</td>
<td>24</td>
<td>Increase</td>
<td>[87]</td>
</tr>
<tr>
<td>IL-2</td>
<td>hPBMC</td>
<td>ns</td>
<td>p</td>
<td>50</td>
<td>2.25</td>
<td>15 min a day (3 days)</td>
<td>Decrease</td>
<td>[119]</td>
</tr>
<tr>
<td>IL-2R</td>
<td>hPBMC</td>
<td>ns</td>
<td>p</td>
<td>50</td>
<td>2.5</td>
<td>24</td>
<td>Increase</td>
<td>[86]</td>
</tr>
<tr>
<td>IL-6</td>
<td>hPBMC</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>2.5</td>
<td>24</td>
<td>Increase</td>
<td>[89]</td>
</tr>
<tr>
<td>IL-8</td>
<td>Human keratinocyte</td>
<td>IL-1β</td>
<td>s</td>
<td>75</td>
<td>1.5</td>
<td>24</td>
<td>Decrease</td>
<td>[118]</td>
</tr>
<tr>
<td>IL-10</td>
<td>Human keratinocyte</td>
<td>IL-1β</td>
<td>s</td>
<td>75</td>
<td>1.5</td>
<td>24</td>
<td>Decrease</td>
<td>[118]</td>
</tr>
<tr>
<td>TNF-α</td>
<td>hPBMC</td>
<td>ns</td>
<td>s</td>
<td>50</td>
<td>1 to 30</td>
<td>71</td>
<td>Decrease</td>
<td>[102]</td>
</tr>
<tr>
<td>INF-γ</td>
<td>hPBMC</td>
<td>PHA or ionomycin</td>
<td>s</td>
<td>50-60</td>
<td>1-2</td>
<td>1 to 3 days</td>
<td>Decrease</td>
<td>[103]</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Human monocyte</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>45 ± 5</td>
<td>3 h a day (3 days)</td>
<td>Increase</td>
<td>[105]</td>
</tr>
<tr>
<td>RANTES</td>
<td>Human keratinocyte</td>
<td>PHA</td>
<td>s</td>
<td>50</td>
<td>1</td>
<td>24</td>
<td>Decrease</td>
<td>[106]</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>Human keratinocyte</td>
<td>ns</td>
<td>s</td>
<td>50</td>
<td>1</td>
<td>24</td>
<td>Decrease</td>
<td>[107]</td>
</tr>
<tr>
<td>PGE\textsubscript{2}</td>
<td>Human keratinocyte</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>1</td>
<td>1 to 48</td>
<td>Decrease</td>
<td>[108]</td>
</tr>
<tr>
<td>NO</td>
<td>Human monocyte</td>
<td>ns or LPS</td>
<td>s</td>
<td>50</td>
<td>1</td>
<td>o.n.</td>
<td>Increase</td>
<td>[98]</td>
</tr>
</tbody>
</table>

Abbreviations: IL, interleukin; IL-2R, interleukin-2 receptor; TNF, tumor necrosis factor; INF, interferon; MCP-1, monocyte chemotactic protein-1; RANTES, regulated upon activation, normal T-cell expressed and secreted; MIP-1α, macrophage inflammatory protein-1α; PGE\textsubscript{2}, prostaglandin E\textsubscript{2}; NO, nitric oxide; hPBMC, human peripheral blood mononuclear cells; ns, not stimulated; LPS, lipopolysaccharide; PHA, phytohaemagglutinin; s, sine; p, pulsed; Hz, hertz; mT, milliTesla; o.n., overnight. Ref, reference.
tates the entrance and duration of the inflammation in the skin. Lymphocyte and neutrophil recruitment is followed by subsequent recruitment of monocytes/macrophages that are enabled in the microenvironment of the lesion. The dynamic processes of leukocyte rolling and adhesion to the venular endothelium are considered to be effected by the microenvironment between leukocytes and the endothelium. Ushiyama et al., through real-time, confocal laser-scanning microscopy, showed in vivo, that EMFs affect this process, reporting that whole body exposure (50 Hz, 3 mT, 30 min) significantly influences cell-to-cell interaction between venular endothelial cells and leukocytes in the mouse subcutaneous microvasculature [85].

EMFs also induce PBMC activation and pro-inflammatory cytokine production. Some authors have shown a significant increase in the percentage of activated T lymphocytes after PEMF exposure [86]. Frahm et al. proposed that EMFs functionally activate differentiated mouse macrophages by increasing their phagocytic activity and production of ROS, enabling the killing of microbes within their phagosomes. In addition, activation also causes the secretion of cytokines such as IL-1β and TNF-α [87], which further induces expression of the cell adhesion molecules on endothelial cell surfaces and recruitment of leukocytes to the wound site [88]. These data suggest the ability of fields to sustain the inflammatory process at the beginning of wound healing.

Cossarizza et al. demonstrated that PEMF exposure of PBMCs increased both the spontaneous and the phytohemagglutinin (PHA)- and TPA-induced production of interleukin-1 (IL-1) and IL-6. These findings suggest that cells of the monocytic lineage can be important cellular targets for PEMFs. Since these cytokines are among the most pleiotropic, these data first contributed to the understanding of the effects of PEMFs on the proliferation of human lymphocytes, and the effects exerted by such fields on human tissues, whose physiological activity is highly dependent on IL-1 and IL-6 [89].

Interleukin-2 (IL-2), originally identified as T cell growth factor [90], has been recently recognized for its critical role in the generation and maintenance of regulatory T cells [91-94]. Indeed, IL-2 deficiency reduces regulatory T cells levels [91, 95], leading to spontaneous lymphocyte proliferation, polyclonal activation of T and B cells, and autoimmune disease. Also, IL-2 provides essential signals for survival and expansion of γδDETC precursors in the fetal thymus and after migration to the skin. Of note, T cell stimulation increases the efficiency of tissue repair in wounded human skin cultured in vitro. In contrast, T cells isolated from chronic wounds do not produce growth factors, such as IGF-1, and are not responsive to stimulation. These cells are unable to produce IL-2 and other cytokines on ex vivo stimulation, suggesting that the normal TCR signaling pathway is impaired in patients with non-healing wounds [96]. The effect of EMFs on IL-2 and IL-2R expression on T-lymphocytes was first described by Cossarizza et al. 1989 [86]. Their results suggest that PEMFs (50 Hz, 2.5 mT) do not increase IL-2 production after 24 h of exposure, but reported that expression of IL-2R on lymphocyte cell membranes was markedly increased in PEMF-exposed cells, suggesting that field exposure could increase lymphocyte proliferation by increasing utilization of IL-2. To this end, Pessina and Aldinucci, showed increased levels of this cytokine in PBMCs exposed for longer periods (48 h) and stimulated with PHA. They proposed that the proliferation indexes were also significantly increased as a consequence of IL-2 production, at the same time as PEMFs treatment, comparing biological activity with cytokine antigen presence [97].

MCP-1 represents another target of EMFs. This chemokine is released from platelet granules and is produced in the wound area by resident cells, such as endothelial cells, keratinocytes at the wound edge and macrophages. It represents an important mediator of monocyte/macrophage recruitment and activation at the injury site. Reale et al. showed that exposure of LPS-stimulated human monocytes to EMFs, up-regulates MCP-1 both at the mRNA level and the protein level. Also, EMFs act in determining NO production and bioavailability. Treatment of the monocytic cell line (THP-1 cells) resulted in down-regulated expression of iNOS [98, 99], but in increased bioavailable NO, as confirmed by the correlated increment of cGMP in exposed compared to non-exposed control cells. Bioavailable NO is critical to ensure good wound closure. Indeed, NO participates in the orchestration of wound healing, influencing macrophages themselves, fibroblasts, and keratinocytes within the intercellular communication network during repair [100].

The anti-inflammatory effects of EMFs depend upon decreased pro-inflammatory cytokine production and increased anti-inflammatory cytokines. Recently, modulation of cytokines expression by PEMF therapy was reported in a clinical study for the first time. In particular, concentrations of the pro-inflammatory cytokine, IL-1β, in post-operative surgical wound exudates, were three-fold reduced [101]. Previously, Jonal et al. reported decreases in the spontaneous production of TNF-α in the intensity range of 1 mT to 30 mT, and in interferon-α (IFN-α) at 10 mT in human PBMCs [102]. Accordingly, Petrini et al. showed that sinusoidal 50 Hz EMFs suppresses TNF-α production in human PBMCs [103]. In contrast, Ikeda et al. suggested no effects from 50/60 Hz EMF exposure either as regards cytotoxic activity or cytokine production in human PBMCs [104].

Other data show decreased INF-γ levels and increased expression of the anti-inflammatory cytokine IL-10 in PBMCs of healthy volunteers [105]. Diluzio et al. proposed that EMFs, through cytokine expression regulation, could modulate monocyte/macrophage transition. They reported significant inhibition by EMFs of the production of MCP-1 and RANTES in cultured human macrophages stimulated with PHA [106].

In addition to ex vivo monocytes/macrophages and the monocytic cell line, the EMF anti-inflammatory effects, significantly involved a keratinocyte cell line. This property was elicited by down-regulation of specific chemokines of the inflammatory phase of wound healing. Vianale et al., showed that exposure of human keratinocytes (HaCat cell line) to 50 Hz EMFs, induced an early reduction of NF-kB levels, down-regulating mRNA expression and release of IL-8, MCP-1, MIP-1α and RANTES. Also, they reported an increase in keratinocyte growth [107], helping to explain the in vivo evidence that suggests improvement in the wound closure rate. More recently, Patruno et al. showed that the exposure of human keratinocytes to EMFs increased iNOS and eNOS expres-
that EMFs modulate Ca²⁺ binding to CaM, and there-
on keratinocytes, as previously discussed. They suggest

Pilla et al. proposed a model that contributes to explain the
EMF-mediated activity of eNOS reported by Patruno et al.
on keratinocytes, as previously discussed. They suggest that
EMFs modulate Ca²⁺ binding to CaM, and therefore the
production of activated CaM, and subsequently activated eNOS [111]. Also, several studies argue that
different cell types, such as endothelial cells, respond to
EMFs by producing HSP [112]. The effect of EMFs on
HSP can be induced by CaM-dependent NO signaling,
even at low levels [113]. Moreover, HSP induced prior to
injury, is poised to cause, upon injury, an immediate release of
NO from eNOS, contributing to the down-regulation of
pro-inflammatory cytokines, such as IL-1β [114], and
protecting tissues from inflammation damage [111].

One of the early responses to inflammatory stimuli in cells
involved in the repair processes of keratinocytes, is the
induction of COX-2, promoting the release of PGs. Up-
regulation of COX-2 appears to be significantly involved in
the persistent inflammation seen in chronic wounds [115]. Contradictory data on the role of COX-2 in wound
repair have been reported. Some authors affirm that COX-
2 inhibition suppresses wound inflammation and reduces
granulation/scar tissues [116], while others indicate that
COX-2 is not essential for wound repair, probably because of
the presence of compensatory pathways [117]. Patruno et al. showed that a COX-2 expression-reduction following
EMF exposure reduced PGE₂ production associated with a
decrease in catalase activity and O²⁻ production in human
keratinocytes [108]. These experiments indicate that EMF
exposure accelerates the switching from the inflammatory
phase to the final repair phase during wound healing.

Several studies show that field exposure also has anti-
inflammatory effects on fibroblast-like cell populations. To
this end, Ongaro et al. demonstrated that EMFs decreased
PGE₂ and the production of pro-inflammatory cytokines
IL-6 and IL-8 in human fibroblasts first activated with IL-
1β. Also, they observed EMF activity in increasing IL-10
levels and they speculate that these effects could be par-
tially dependent on synergistic effects of EMFs and adeno-
sine receptors stimulation, inhibiting the pro-inflammatory
NF-kB signaling pathway [118]. These results are in accor-
dance with early mediated reduction of NF-κB levels by
EMFs described by Vianale et al. on keratinocytes. Simi-
larly, a recent study concluded that PEMF irradiation,
not altering the cell immune-phenotype of the fibroblast-
like cell population, provokes a decrease in the production
of inflammatory-type cytokines (IL-1β, TNF-α) and an
increase in cytokines of lymphocytic origin (IL-10) [119].

CONCLUSION

In this review, we report a summary of experimental
works that describe the effects of EMFs in regulating
the expression and modulation of inflammation in relation
to pathological conditions, particularly chronic wound
healing. It emerged that EMFs can increase the initial
inflammatory response, improving recruitment and activa-
tion of PBMCs at wound sites. In particular, fields act by
increasing ROS, NO and pro-inflammatory cytokines pro-
duction in macrophages and following this can contribute to
the establishment of a switch toward the resolution of
the inflammatory response, and thus wound healing.
Accordingly, EMFs induce anti-inflammatory cytokines
and contribute to the down-regulation of pro-inflammatory
ones. This event can be explained by the increase in the
bioavailability of NO induced by exposure to EMFs in cell
types involved in the reparative process. Indeed, it has been
reported that EMFs activating the CaM lead to increased
activity of eNOS and bioavailable NO. At this level, the
NO is able to activate both guanylate cyclase (sGC) and adenylate cyclase (sAC). The first activation is confirmed
by increased levels of cGMP caused by exposure to EMFs and
might explain the NO-mediated effects observed in vivo
and in vitro proliferation, tissue repair and angiogen-
esis, while the activation of sAC, which was confirmed by
a reduction of the effects of EMF exposure through the
use of antagonists for AR receptors, may explain the anti-
inflammatory effects of fields treatment. The activation of
this transduction signaling could explain the modulation
effect of EMFs on cytokine expression profiles, through
synergy with adenosine receptors and induction of an early
decrease in the activity of NF-κB.

In conclusion, EMFs might have a possible therapeu-
tic application in diseases such as ulcers, in which
chronic inflammation is an important component. How-
ever, although numerous in vitro experiments have allowed
us to understand partially the evidence described in vivo, an
optimal range of wave parameters, in particular shape, fre-
cuency, amplitude and intensity, remains to be delineated.


REFERENCES

1. Rivera AE, Spencer JM. Clinical aspects of full-thickness wound
ELF and wound healing: implication of cytokines


8 M. Pesce, et al.


97. Pessina GP, Aldinucci C. Short cycles of both static and pulsed electromagnetic fields have no effect on the induction of cytokines by peripheral blood mononuclear cells. Bioelectromagnetics 1997; 18(8): 548-54.


