Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles

Marilena Lucarelli1, Antonietta M. Gatti2, Graziana Savarino1, Paola Quattroni1, Lucia Martinelli1, Emanuela Monari2, Diana Boraschi1

1Unit of Immunobiology, Institute of Biomedical Technologies, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
2Laboratory of Biomaterials, University of Modena, National Institute of Material Physics (INFM), Via del Pozzo 71, I-41100 Modena, Italy

ABSTRACT. Nano-sized particles of ceramic and metallic materials are generated by high-tech industrial activities, and can be generated from worn-out replacement and prosthetic implants. The interaction with the human body of such nanoparticles has been investigated, with a particular emphasis on innate defence mechanisms. Human macrophages (PMA-differentiated myelomonocytic U-937 cells) were exposed in vitro to non-toxic concentrations of TiO2, SiO2, ZrO2, or Co nanoparticles, and their inflammatory response (expression of TLR receptors and co-receptors, and cytokine production) was examined. Expression of TLR receptors was generally unaffected by exposure to the different nanoparticles, except for some notable cases. Exposure to nanoparticles of ZrO2 (and to a lesser extent TiO2), upregulated expression of viral TLR receptors TLR3 and TLR7. Expression of TLR10 was also increased by TiO2 and ZrO2 nanoparticles. On the other hand, TLR9 nanoparticles of ZrO2 (and to a lesser extent TiO2), upregulated expression of viral TLR receptors TLR3 and TLR7. Expression of TLR10 was also increased by TiO2 and ZrO2 nanoparticles. On the other hand, TLR9 expression was decreased by SiO2 nano-particles, and expression of the co-receptor CD14 was inhibited by Co nanoparticles. Basal and LPS-induced production of cytokines IL-1β, TNF-α, and IL-1Ra was examined in macrophages exposed to nanoparticles. SiO2 nanoparticles strongly biased naïve macrophages towards inflammation (M1 polarisation), by selectively inducing production of inflammatory cytokines IL-1β and TNF-α. SiO2 nanoparticles also significantly amplified the inflammatory phenotype of LPS-polarised M1 macrophages. Other ceramic nanoparticles had little influence on cytokine production, either in resting macrophages, or in LPS-activated cells. Generally, Co nanoparticles had an overall pro-inflammatory effect on naïve macrophages, by reducing anti-inflammatory IL-1Ra and inducing inflammatory TNF-α. However, Co nanoparticles reduced production of IL-1β and IL-1Ra, but not TNF-α, in LPS-polarised M1 macrophages. Thus, exposure to different nanoparticles can modulate, in different ways, the defence/inflammatory capacities of macrophages. A thorough analysis of these biasing effects may shed light on the mechanisms of pathogenesis of several diseases based on dysregulation of the innate response (allergies, autoimmunity, tumours).

Keywords: nanoparticles, inflammation, macrophages, TLR receptors, cytokines, innate immunity

INTRODUCTION

The fast-growing development of nanotechnologies in many scientific, technological, and industrial application areas is raising new questions about possible risks to human health and environmental safety. Nano-sized particles can also be released from medical implants (such as bone and tooth replacements) upon prolonged mechanical stress. The reduced size of nanoparticles allows their entrance to and diffusion within the body, and their interaction with different types of cells. The diffusion capacity of nanoparticles is being extensively studied for drug delivery exploitation [1-3], but on the other hand the possibility of interference with cellular functions remains relatively unexplored.

The body is primarily protected from foreign invasion by the innate immune system, which is geared towards discriminating between self and alien/abnormal molecular patterns and mounting the first set of inflammatory and defence responses. Macrophages are among the first innate immune cells recruited to a site of invasion, and to come into contact with the foreign agents. Macrophages are versatile, plastic cells, which respond to environmental signals with diverse functional programmes. Classical macrophage activation in response to microbial products (e.g., bacterial lipopolysaccharides, LPS) and interferon-γ (IFN-γ) gives rise to potent effector cells (M1), which kill microorganisms and tumour cells and produce inflammatory cytokines and chemokines (including IL-1 and TNF-α). On the other hand, alternative macrophage activation (e.g., with IL-4) induces M2 macrophages, which tune inflammatory responses and adaptive Th1 immunity, scavenge debris, and promote angiogenesis, tissue remodelling and repair [4-6]. The microenvironment thus influences macrophage activation and their subsequent functions.
Mechanical damage due to particulate agents of different chemical composition usually leads to necrotic cell damage and to a potent innate and inflammatory reaction with activation of M1 macrophages. This will eventually lead to elimination of the foreign agent, development of specific immune response, and tissue repair by M2 macrophages. In other cases, as in silicosis, silica particles induce fibrosis and macrophage apoptosis, leading to chronic pathology as particles cannot be removed by scavenging cells [7].

A very important aspect in the initiation of macrophage activation is the presence of receptors of the TLR/IL-1R family. TLR/IL-1R are an important class of receptors involved in the initiation of the inflammatory response and of innate immunity reactions, characterised by a common signalling pathway. TLR/IL-1R include the receptor chains for the inflammatory/immune cytokines IL-1 [8] and IL-18 [9], and the TLR subfamily. TLR (Toll-like receptors) are germ-line encoded receptors that can be activated by different microbial components (LPS, lipopeptide, dsRNA, GU-rich ssRNA, flagellin, CpG-rich DNA, etc.) and endogenous stress-related proteins (heat shock proteins, fibrinogen), thereby initiating inflammatory and innate immune responses [10, 11]. TLR are mainly expressed by myeloid cells (macrophages), although their presence has been described in several other cells and organs [10, 11].

In this study, the interaction of macrophages with nanoparticles was investigated. Nanoparticles of ceramic (silica, SiO₂; titania, TiO₂; zirconia, ZrO₂), and metallic materials (cobalt, Co) have been assessed for their ability to modulate the vital and functional parameters of human macrophages (the U-937 myelomonocytic cell line differentiated in culture with PMA). After evaluating the possible cytotoxic effect of nanoparticles, their capacity to affect macrophage defence functions was examined in terms of modulation of expression of TLR, and in functional assays of M1 macrophage polarisation (production of the inflammatory cytokines IL-1β and TNF-α) versus M2 polarisation (production of the anti-inflammatory mediator IL-1Ra).

METHODS

Nanoparticles

Ceramic, metallic, and polymeric nanoparticles were examined for experimental use. Ceramic materials were: silica (silicon oxide, SiO₂; titania (titanium oxide, TiO₂; widely used as a coating in dental and orthopedic implants), zirconia (zirconium oxide, ZrO₂). Of the metals, cobalt and nickel were considered, as both are known to be allergenic. Nanoparticles of nickel did not resuspend homogeneously in aqueous medium, and formed micro-sized particulate agglomerates, and were therefore discarded. Polymeric nanoparticles of polyvinylchloride (PVC) were not assayed for technical reasons (floating particles did not interact with adherent cells in culture). Nanoparticles of SiO₂, TiO₂, and ZrO₂ were prepared by TAL Materials, Inc. (Ann Arbor, MI, USA) by flame spray pyrolysis, i.e. by combusting metallo-organic alcohol solutions with oxygen at 1200-2000 °C, followed by rapid quenching, to produce unagglomerated, single particle nanoparticles. The average nanoparticle size is 15 nm for SiO₂ (range 4-40 nm), and 70 nm for TiO₂ (range 20-160 nm). The size of ZrO₂ nanoparticles ranged between 5-30 nm. Cobalt nanoparticles (Cobalt 100 g - FLUKA cod. 60784 – Lot & filling code: 334014/1 21901) were purchased from Sigma Chemical Co. (St. Louis, MO, USA) and had a size varying between 50 and 200 nm. Chemical characterisation of Co nanoparticles revealed the presence of iron, in addition to cobalt and oxygen. Before use in culture, powders were further depyrogenated at 180 °C for 4 h. Working batches of nanoparticles were prepared in sterile PBS and stored in depyrogenated glass vials. All nanoparticle suspensions were vigorously shaken (vortexed for 30 sec at max speed) before each transfer for dilution or dispensing. Routine checking by microscopy was performed on nanoparticle suspensions to assess the homogeneity of nanoparticle distribution in dilution procedures.

Cells

The human myelomonocytic cell line U-937 (histiocytic lymphoma; ATCC n. CRL-1593.2, obtained from the Bank of Cell Lines of the National Institute for Cancer Research, Genova, Italy) was used. Cells were grown to subconfluency in RPMI-1640 medium supplemented with 50 μg/mL gentamycin sulfate, 2 mM L-glutamine, 25 mM HEPES buffer, and 2 g/L NaHCO₃ (all from Euroclone Life Sciences Division, Pero, Italy) (hereafter referred to as culture medium), with the addition of 10% FBS (Euroclone). To induce macrophage differentiation, subconfluent cultures were exposed to 10 nM PMA (Sigma Chemical Co.) for 72 h at 37 °C. Exposure to PMA induced strong adherence, cytoskeletal rearrangements and the appearance of macrophage-like morphology. All media and supplements were endotoxin-free. Cultures were routinely tested for mycoplasma contamination (Mycoplasma detection kit, Roche Diagnostics, Milano, Italy).

Cell proliferation and survival

For vitality and proliferation experiments, cells were plated at 5×10⁴ cells/well of Cluster³⁶ plates (Costar, Cambridge, MA, USA) in 100 μL culture medium + 1% AB serum (Sigma Chemical Co.), and incubated for 24 h. Increasing doses of nanoparticles were then added in 100 μL of fresh medium for increasing time periods. Proliferation (number of metabolically active cells) was calculated by counting at least 100 cells/well under an inverted microscope. All counts were performed within three min from addition of the dye. Based on the results of cell proliferation/survival assays, the maximal non-toxic concentrations of nanoparticles were selected for subsequent experiments (50 μg/10⁶ cells/24 h for Co, 400 μg/10⁶ cells/24 h for other nanoparticles) (figure 1).

Semi-quantitative RT-PCR for TLR expression

Cells were cultured for 24 h in medium + 1% AB serum, in the presence or absence of nanoparticles (Co nanopar-
Toxicity of different nanoparticles on human macrophages (PMA-differentiated U-937 cells) in culture. Data were obtained with the XTT assay, which measures metabolically active cells, after 24 h of exposure to nanoparticles. Qualitatively overlapping data were obtained at different time points (12 h, 48 h, 72 h, 96 h), using the trypan blue dye exclusion assay.

Table 1
<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
<th>Fragment length</th>
<th>Accession N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR1</td>
<td>CAGTGTCGTGACGCTACGCCATGTT</td>
<td>TTCTAATACCGTGCTTGAAGAGA</td>
<td>104 bp</td>
<td>U88540</td>
</tr>
<tr>
<td>TLR2</td>
<td>TACCTCATTAGCAACAGTG</td>
<td>GTAGATCTGACGATCAATCTCTC</td>
<td>365 bp</td>
<td>U88878</td>
</tr>
<tr>
<td>TLR3</td>
<td>GAATCCAAACACCTGTGACATATA</td>
<td>TCTCAGAAGAGTGTAATTTGGT</td>
<td>169 bp</td>
<td>NM_003265</td>
</tr>
<tr>
<td>TLR4</td>
<td>CCTAAGAGAAACCTGATTACACC</td>
<td>GATAATGCTATAGGCAAGAC</td>
<td>148 bp</td>
<td>U88880</td>
</tr>
<tr>
<td>TLR5</td>
<td>GTCCAAGGACAACCCGGGACC</td>
<td>TCTCTGAGATCCTCAGGCACCCTC</td>
<td>437 bp</td>
<td>AB060095</td>
</tr>
<tr>
<td>TLR6</td>
<td>AGACCTACACAGGTCACCACC</td>
<td>GAAGGATACATCTCTGCATGAG</td>
<td>482 bp</td>
<td>NM_006068</td>
</tr>
<tr>
<td>TLR7</td>
<td>GTAACACAGTTGACAGCCGCTC</td>
<td>GGTCCGAGGTGTTGATGTC</td>
<td>320 bp</td>
<td>AF240647</td>
</tr>
<tr>
<td>TLR8</td>
<td>GTGCCACCGAACCTGACAGGCC</td>
<td>GATCCAGACCTCGAGGAGGCGC</td>
<td>309 bp</td>
<td>AF245703</td>
</tr>
<tr>
<td>TLR9</td>
<td>GGACCTGCTGACTGCTCTCCA</td>
<td>AGCTCGTGTTTACACCGTGATC</td>
<td>153 bp</td>
<td>AF245704</td>
</tr>
<tr>
<td>TLR10</td>
<td>TCTGCTGTACAATATGATTTGCTG</td>
<td>GAGTTCTTGCCGATATTATA</td>
<td>286 bp</td>
<td>AF296673</td>
</tr>
<tr>
<td>CD14</td>
<td>TGGATTCTAGGGAAGCACC</td>
<td>TTCTGCGTCTGCGAATC</td>
<td>143 bp</td>
<td>M86551</td>
</tr>
<tr>
<td>MD-2</td>
<td>CAATCATGTACCCTTCTGTGTTT</td>
<td>TTCTAATTTGATAGGTTGTTG</td>
<td>487 bp</td>
<td>AB018549</td>
</tr>
<tr>
<td>GAPDH (1)</td>
<td>GGTGAAGTGGGTGAGCTGCAAAG</td>
<td>GAGGATCTCTGTCCTGGAAAGA</td>
<td>239 bp</td>
<td>NM_002046</td>
</tr>
<tr>
<td>GAPDH (2)</td>
<td>AAGCTGTACGTTGGAGACCTG</td>
<td>AGTGGGTGTCGTTGGAAAGT</td>
<td>160 bp</td>
<td>NM_002046</td>
</tr>
</tbody>
</table>

RESULTS

Exposure of human macrophages (PMA-differentiated U-937 cells) to increasing doses of nanoparticles for different times did not cause cell death or inhibition of cell proliferation, with the exception of Co nanoparticles. Two different assays were used to assess cell vitality/proliferation. The XTT assay measures the number of metabolically active cells (thus reflecting cell survival and proliferation). The trypan blue dye exclusion assay determines the presence of necrotic cells. Ceramic nanoparticles had no toxic effect at doses as high as 400 µg/10⁶ cells for up to 96 h (figure 1), whereas Co nanoparticles showed significant toxicity at doses exceeding 100 µg/10⁶ cells/24 h. Results obtained with the two assays were qualitatively and quantitatively very similar, thus only the results of the XTT assay are shown. For each type
of nanoparticle, the highest, non-toxic dose assayed was subsequently used for functional experiments. This was 400 μg/10^6 cells/24 h for SiO₂, TiO₂, and ZrO₂, and 50 μg/10^6 cells/24 h for Co.

Expression of TLR has been evaluated in human macrophages exposed to nanoparticles by semi-quantitative RT-PCR. Data in figure 2 show that in resting conditions (empty columns), human macrophages express all the TLR chains except TLR3. Modulation of TLR gene expression was examined following exposure for 24 h to nanoparticles of SiO₂, TiO₂, or ZrO₂ (400 μg/10^6 cells), or Co (50 μg/10^6 cells). It was seen that nanoparticles have different effects on the expression of different TLR genes. Of the ceramic materials (grey columns), SiO₂ nanoparticles (light gray) had little effect on TLR expression, except for the decreased expression of TLR9 (receptor for bacterial/viral DNA). SiO₂ nanoparticles also appeared to induce a very low expression of the viral receptor TLR3; however, the biological relevance of this finding needs to be confirmed. Nanoparticles of ZrO₂ (dark gray), showed a selective capacity for inducing/increasing expression of viral receptors TLR3 and TLR7, as well as that of TLR10, but did not significantly affect expression of TLR8 (another putative viral receptor). Likewise, TiO₂ nanoparticles (medium gray) increased expression of TLR7 and TLR10, but not TLR3, and they also significantly enhanced expression of the TLR4 co-receptor MD-2. Co nanoparticles (black columns) showed no significant effect on the expression of most TLR, however they significantly decreased expression of the TLR4 co-receptor CD14.

The production of the inflammatory and defence mediators IL-1β and TNF-α, and of the anti-inflammatory cytokine IL-1Ra, was evaluated in human macrophages cultured for 24 h in the presence or absence of nanoparticles. As shown in table 2, the low level of basal IL-1β production was not affected by a 24 h treatment with TiO₂ or Co nanoparticles, whereas it was significantly enhanced by SiO₂ nanoparticles (130-fold increase). Nanoparticles of ZrO₂ had a very limited stimulating effect on IL-1β production (two-fold increase). By examining production of TNF-α, both SiO₂ and Co nanoparticles were seen to induce significant production of the inflammatory mediator (20-30-fold increase), whereas the other nanoparticles were inactive. On the other hand, the spontaneous production of the anti-inflammatory mediator IL-1Ra was enhanced only three-four fold by ceramic nanoparticles, while significantly inhibited by nanoparticles of Co (>70%).

The ability of nanoparticles to modulate cytokine production in LPS-activated (M1 polarised) macrophages was then assessed. When exposed to an optimal concentration of LPS (100 ng/mL), macrophages produce enhanced amounts of pro-inflammatory cytokines (9-30-fold) and a smaller increase of anti-inflammatory IL-1Ra (3.5-fold) (table 2). LPS-activated macrophages, in the presence of SiO₂ nanoparticles, produced amounts of IL-1β and TNF-α that were significantly higher than the sum of those

![Figure 2](image_url)

Expression of TLR in human macrophages exposed to nanoparticles in culture. Cells were incubated with nanoparticles for 24 h before mRNA extraction and semi-quantitative RT-PCR analysis. The housekeeping gene GAPDH was used as reference. Results are representative of at least two independent experiments.
induced by exposure to either stimulus alone, indicating
synergistic induction. On the other hand, no variation in
the production of IL-1Ra was observed in M1 macrophages
upon exposure to SiO2 nanoparticles. TiO2 and ZrO2 nanopar-
ticles had a partial, pro-inflammatory effect on M1-polarised
macrophages, as both slightly decreased production of IL-1Ra, and ZrO2 nanoparticles also in-
creased LPS-induced IL-1β. Finally, metallic Co nanopar-
ticles had an additive effect on TNF-α production by
LPS-activated macrophages, while they inhibited induc-
tion of IL-1β and IL-1Ra.

DISCUSSION

The different types of nanoparticles represent a new species of non-biodegradable environmental pollutants that are generated in substantial amounts by modern nanotech-
nological activities. Nano-sized particles can be released from everyday items (e.g., TiO2 is used as whitener for paper, paint, food products, toothpaste), can be found as
environmental contaminants of industrial locations and factories, and can be released into the body by worn prosthetic implants (e.g., dental bridges, bone replacement implants). In war zones, a variety of nanoparticles can be
generated by blasting of high technology weapons and
these can contaminate agricultural and zootechnical pro-
ducts, soil and water. In some of these situations (e.g. war zones, industrial settings), the extent of nanoparticulate
contamination can be very high, although the lack of reliable data on the type and level of nanoparticulate con-
tamination in human environments does not allow a pre-
cise assessment of exposure risks. Whereas the inflamma-
tory effect of micro-sized particles is well-documented
(readily activating the scavenging activity of macrophages
and eliciting potent inflammatory responses) and depend-
ent on their size (which limits their diffusion), the pos-
sible effects of nanoparticles on cell function is largely
unknown. The reduced size of nanoparticles is expected to
result in failure to trigger a normal inflammatory response,
leading to the hypothesis that these may be “inactive” as
far as physiological function of cells are concerned. How-
ever, they are, in fact, potentially far more active than
larger particles, due to the very large surface area (up to
1,000 square meters/gram), which enormously increase
their potential reactivity upon cell contact. There is evi-
dence that nanoparticles can escape classical scavenging
defence mechanisms and, after adhering to the cell surface,
can be internalised through a non-phagocytic mechanism,
and have been detected in the cell cytoplasm and in the
nucleus [1-3, 12].

In order to evaluate the possible influence of nanoparticles
on host ability to cope with external insults, their effect on
the function of professional, innate defence cells has been
examined, using as the cellular model, the human histio-
cytic lymphoma line U-937, differentiated to macrophages
with PMA. Macrophages (professional scavengers and
inflammatory cells) are among the first immune cells to
come into contact with foreign particles and microorgan-
isms, to initiate the innate defence response. Macrophages
recognise foreign particles through TLR, a family of evolu-
tionarily conserved pattern recognition receptors that
can sense and specifically recognise pathogenic microor-
ganisms and endogenous stress factors, thereby initiating
immune responses [13-16]. In humans, ten different TLR
proteins have been identified so far, of which nine
(TLR4–9) have been characterised functionally [17-19].
Inflammatory stimuli, such as bacterial components (e.g.,
LPS which triggers TLR4) or inflammatory cytokines
(IFN-γ), can bias macrophages to become potent inflam-
matory effector cells (M1-polarised macrophages), able to
produce inflammatory mediators and sustain the inflam-
matory and immune reaction eventually leading to elimi-
nation of the foreign body.

The possibility that non-toxic doses of ceramic (TiO2,
SiO2, and ZrO2) and metallic nanoparticles (cobalt) could
modulate the innate defensive function of macrophages
was examined. This was evaluated by two parameters: the
expression of innate immunity receptors (TLR1–10 and the
TLR4 co-receptors CD14 and MD-2), and M1 polarisation
(evaluated as the production of inflammatory cytokines
IL-1β and TNF-α, in comparison with the anti-
inflammatory cytokine IL-1Ra). In these assays, nanopar-
ticles were used at the highest, non-toxic concentrations
measured, in order to simulate exposure in heavily con-
taminated environments. However, since no concrete data
are available on nanoparticle contamination in different
environments, or on the possible effects of accumulation,
the dose selected for the in vitro experiments are to be
considered only as an indication.

Results obtained show that nano-particles have significant
effects on the expression of some TLR molecules, suggest-
ing that they could affect cell reactivity to infections by
altering the expression of innate receptors. Particularly
interesting is the finding that nanoparticles (both ceramic
and metallic) can enhance expression of TLR chains im-
portant for viral-dependent stimulation. In fact, in normal
conditions macrophages do not express TLR3, the receptor

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Treatment of macrophages</th>
<th>Cytokine production (pg/10⁶ cells/24 h; mean ± SD) by macrophages exposed to nanoparticles</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>medium</td>
<td>7.0 ± 2.8</td>
</tr>
<tr>
<td></td>
<td>LPS</td>
<td>60.8 ± 11.6</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>LPS</td>
<td>27.1 ± 2.4</td>
</tr>
<tr>
<td>TNF-α</td>
<td>medium</td>
<td>896.1 ± 38.0</td>
</tr>
<tr>
<td></td>
<td>SiO₂</td>
<td>2,253.7 ± 79.1</td>
</tr>
<tr>
<td></td>
<td>TiO₂</td>
<td>20.5 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>ZrO₂</td>
<td>190.3 ± 0.1</td>
</tr>
<tr>
<td>IL-1Ra</td>
<td>medium</td>
<td>13,283.2 ± 1,030.8</td>
</tr>
<tr>
<td></td>
<td>SiO₂</td>
<td>14,093.5 ± 687.0</td>
</tr>
<tr>
<td></td>
<td>TiO₂</td>
<td>12,192.9 ± 29.4</td>
</tr>
<tr>
<td></td>
<td>ZrO₂</td>
<td>11,388.8 ± 1,242.8</td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>7,894.9 ± 914.0</td>
</tr>
</tbody>
</table>

p significant difference (*p*<0.05) from respective medium control. **'** significant difference (*p*<0.05) from LPS alone. ***'*** significant difference (*p*<0.05) from LPS alone and nanoparticles alone.

Table 2

Production of cytokines by human macrophages
activated by dsRNA [17], but this can be significantly induced upon exposure to ZrO$_2$ nanoparticles. Another receptor important in virus recognition is TLR7, which binds viral ssRNA and triggers IFN-α/β production through an IRF-3-dependent signalling pathway [19, 20]. Expression of TLR7 is potently enhanced by TiO$_2$ and ZrO$_2$. A similar enhancement by TiO$_2$ an ZrO$_2$ nanoparticles was also observed for expression of TLR10, a receptor of unknown function expressed at low levels in resting macrophages. Thus, it could be inferred that macrophages exposed to nanoparticles of different chemical natures (in particular zirconia) are hyperreactive to viral infections, which may therefore cause excessive inflammation and pathological tissue damage. On the other hand, a decrease in the expression of TLR9, the receptor that recognises CpG motifs within bacterial and viral DNA, was observed in macrophages exposed to silica and titania nanoparticles. Since CpG ligands of TLR9 are being developed as novel effective vaccine adjuvants, because of their ability to stimulate innate immunity [21, 22], it will be important to know that vaccine efficacy might be hampered by nanoparticulate SiO$_2$ and TiO$_2$ contamination in the organism. No significant variation was noticed in macrophages exposed to nanoparticles as regards expression of TLR2 and its co-receptors TLR1 and TLR6, of TLR5, TLR8, and TLR4. However, it is interesting to note that nanoparticles of Co and of TiO$_2$ could modulate expression of TLR4 co-receptors. In particular, macrophages exposed to Co nanoparticles have decreased expression of CD14 (a feature typical of M2-biased macrophages), which should possibly reduce their overall responsiveness to LPS. On the other hand, TiO$_2$ nanoparticles significantly increased expression of MD-2, supposedly enhancing MD-2-dependent LPS responsiveness. The capacity nanoparticles to modify the production of inflammatory defence cytokines by resting or LPS-activated (M1) macrophages was examined. IL-1β is a pivotal cytokine in the initiation of the inflammatory/defence response, responsible of pathological tissue destruction in chronic inflammatory and autoimmune diseases [8]. TNF-α is a multifunctional cytokine with a central role in the effector functions of activated macrophages and other defence cells, and is also greatly involved in pathological inflammatory conditions [23]. Conversely, the receptor antagonist of IL-1, IL-1Ra, is a cytokine which down-regulates inflammation by inhibiting IL-1 activity [24]. All cytokines are produced upon macrophage activation, with a preferential induction of inflammatory (IL-1β, TNF-α) versus anti-inflammatory (IL-1Ra) cytokines in M1 versus M2 macrophages [4-6]. In resting cells, SiO$_2$ nanoparticles show a potent capacity to activate macrophages to produce inflammatory cytokines. The effect was particularly evident for IL-1β production, which was increased by over 100-fold in macrophages exposed to silica nanoparticles as compared to untreated cells. Conversely, other types of nanoparticles had little or no direct capacity to induce inflammatory cytokines, apart from Co nanoparticles, which were selectively able to induce TNF-α, but not IL-1β production. By examining production of anti-inflammatory IL-1Ra, it was noted that the basal level of cytokine production was increased three-four-fold by ceramic nanoparticles, while it was inhibited by Co nanoparticles (>70%). These observations suggest that the presence of different types of nanoparticles can bias resting macrophages towards different effector functions by altering the balance between pro-inflammatory and anti-inflammatory mediators. SiO$_2$ nanoparticles are dramatically pro-inflammatory and act as M1-polarising stimulus, similarly to LPS. In fact, they significantly enhance the production of IL-1β (130-fold) and TNF-α (20-fold), while being much less potent in increasing IL-1Ra production (four-fold). Also, Co nanoparticles promote macrophage inflammatory functions, although with a different profile. In parallel with increasing TNF-α production, Co nanoparticles increase IL-1β activity through a reduction of its antagonist IL-1Ra. Conversely, ceramic nanoparticles of titania and zirconia have an overall anti-inflammatory effect, as they do not significantly affect production of inflammatory mediators, while increasing that of IL-1Ra. The capacity of nanoparticles to alter the balance between pro-inflammatory cytokines and anti-inflammatory mediators was extended to macrophages already activated for inflammatory functions, with bacterial LPS (M1-polarised effector macrophages). In response to LPS, macrophages produce increased amounts of inflammatory cytokines (in this study, LPS induced a 10-fold increase of IL-1β and a 30-fold increase of TNF-α), as compared to anti-inflammatory mediators (3.5-fold increase of IL-1Ra), thus shifting the pro-inflammatory/anti-inflammatory balance towards inflammation. In these already biased macrophages, all types of nanoparticles studied further shifted the cytokine balance towards inflammation, thus amplifying inflammatory M1-effector functions. In particular, SiO$_2$ nanoparticles greatly amplified IL-1β and TNF-α production in M1-polarised macrophages, while having no effect on the production of IL-1Ra. The other ceramic nanoparticles also have an inflammation-promoting capacity, although more limited, as ZrO$_2$ enhanced IL-1β production, and both TiO$_2$ and ZrO$_2$ partially decreased IL-1Ra synthesis. On the other hand, macrophages exposed to Co nanoparticles showed a partial unresponsiveness to LPS (possibly dependent on down-regulation of the co-receptor CD14), as both LPS-stimulated IL-1β and IL-1Ra production were reduced. On induction of TNF-α, the effect of Co nanoparticles was additive to that of LPS suggesting that, at variance with IL-1β and IL-1Ra, induction of TNF-α is partially independent of CD14 at the LPS concentration used [25]. Thus, despite the lack of macroscopic, mechanical inflammatory effects, nanoparticles of metallic or ceramic materials can profoundly modulate the innate/inflammatory response of macrophages. The effects of nanoparticles on gene expression and cellular functions may depend on some parameters typical of the materials. In contrast to ceramic materials, cobalt nanoparticles release ions from the surface, which can interact with ionic components of cells. The surface charge of cobalt nanoparticles can also attract polar molecules, forming stable and/or insoluble compounds, thus altering cellular equilibrium. Silica nanoparticles differ from more inert titania and zirconia nanoparticles as regards solubility. It is known that silica in an aqueous environment turns into a silica hydrated gel [26, 27], which can attract calcium and phosphorus ions and promote their precipitation as insoluble calcium phosphate, which may in turn affect macrophage activation. Titania and the more inert zirconia nanoparticles can elicit significant cellular responses, once they are internalised in
Nanoparticles modulate macrophage defence functions

the cytoplasm (A.M. Gatti, unpublished) [12]. Modulation of innate defence receptors in cells exposed to nanoparticles runs the risk of inadequate defences against certain infections (as in the case of TLR9 inhibition by nanoparticles of silica and titania, which may result in impaired resistance to some viruses and bacteria), or the risk of chronic inflammation (as in the case of zirconia nanoparticles, which induce the expression of TLR3 and increase that of TLR7, thus amplifying virus-triggered inflammation). A further risk of inflammatory pathological dysregulation could lie in the ability of nanoparticles, in particular those of SiO₂, to bias naïve macrophages towards the inflammatory M1 functional phenotype, and to amplify effector functions of M1-polarised macrophages. On the other hand, titania and zirconia nanoparticles do not induce an inflammatory functional phenotype in naïve macrophages. This is in agreement with previous data showing strong inflammation and apoptosis caused by silica particles in vivo, as opposed to the weak and transient effect caused by TiO₂ particles [28, 29].

The notion that nanoparticles of allegedly inert materials can affect cellular functions is of major importance. Indeed, the nanotechnological industry develops and produces nanoparticles of widely different chemical composition, while the risk to human health associated with exposure is unknown. Nanoparticles are also released into the environment by high temperature processes (incineration, cement plants, high technology weapons’ blasting, etc.), where they persist and can access the living organisms through inhalation, or ingestion of contaminated food and water. Of particular relevance is the possibility that the functional anomalies of the innate immune system caused by nanoparticles may be among the causes of the dysregulated amplification of the immune response and concomitant chronic inflammation characteristic of autoimmune diseases [30]. On the other hand, down-modulation of inflammatory innate receptors and cytokines (as observed with Co nanoparticles, which partially reverse the M1 polarisation of macrophages by inhibiting CD14 expression) may hamper immune surveillance and allow tumour development [4, 31].

Acknowledgements. This work was supported by EU contract QLK4-CT-2001-00147 (NANO-PATHOLOGY). Diana Boraschi was also supported by a grant from AIRC (Associazione Italiana Ricerca sul Cancro, Milano, Italy) and by the FIRB project “NIRAM” of the Italian MIUR. Authors are grateful to Marco Paterni (IFC, CNR, Pisa) for providing the MIP software and for his invaluable contribution to the calibration and optimisation of image analysis procedures.

REFERENCES

